International Wheat Yield Partnership

NIFA–IWYP Project Director Meeting

San Diego, CA, 15 January 2017

Richard Flavell
Chair, IWYP Science and Impact Executive Board

Jeff Gwyn
Program Director

iwypprogdirector@iwyp.org
The IWYP Model

Richard Flavell
Chair, IWYP Science and Impact Executive Board

http://iwyp.org
Focus on a yield Increase to Feed 9+ Billion People by 2050

Will require a 60+ % increase in wheat production to meet food demands by 2050

Tester and Langridge. 2010. Science 327:818
To increase wheat yield potential by up to 50% in 20 years:

• To be inspired and managed by an independent management team and structure
• Linked with the private sector
• Developed with state-of-the-art technologies
• To be focused on delivery with a high degree of urgency
IWYP – A Partnership

Partnership between:

- Funding agencies in different countries
- Science teams in different countries
- Different research projects
- Private and public sector institutions
IWYP Founders Sought to:

- Do things differently
- Have own Governance
- Accept high risk / high reward science—seeking breakthroughs
- Take advantage of new technical opportunities
- **Align and partner with other funded projects—e.g. NIFA**
- Focus on outputs for farmers and consumers
- Take discoveries down the product development path (via links with CIMMYT and others)
The IWYP Science Program

Jeff Gwyn
Program Director

http://iwyp.org
IWYP is a Frontier Program for Making Breakthroughs in Yield Potential

- Explore new germplasm
- Discover high impact traits and their underpinning genetics
- New methods for creating variation
- New methods for screening traits
- Genome-wide polymorphic markers
- Rapid screening in fields
- Rapid validation in elite germplasm in fields
IWYP Goal and Strategy

GOAL - Increase the genetic yield potential of wheat by 50% in 20 years

Canopy & Biomass Building

- Optimize carbon fixation and canopy growth/architecture
- Optimize flowering time
- Senescence and grain filling

The IWYP Science Program

Our strategy to:
- Facilitate the sharing and integration of research, project outputs
- Time material inputs, manage capacities
- Realize synergies and generate added value
- Deliver traits and germplasm
Partners in the IWYP Initiative

- **Funding and research organization partners** – provide the resources
- **Private industry partners** – provide strategic direction for deployment, commercial products
- **Science and Impact Executive Board** – provides overall strategy, operational direction and recommendations to Funders
- **Independent managers** – SIEB Chair, Program Director and Manager, Secretariat – operations, coordination
- **Scientists** – most essential and important team member stakeholders that need to be engaged and responsible, creative, focused on delivery with a sense of urgency, collaborative and sharing, successful
Dozens of researchers from 9 countries:

- 8 project selected from IWYP 1st Competitive Call
- 7 projects selected from USDA NIFA-IWYP Call
- 6 IWYP Aligned Projects (growing)

Science portfolio is expanding:

- IWYP 2nd Competitive Call (OPEN NOW!)
- Future Calls (IWYP and Aligned)
- Aligned Projects
IWYP will Capitalize on an R&D Portfolio

The science ...

Funded in companies

Funded via IWYP

IWYP Aligned Projects

Funded and published separately

Coupled with project selection gives IWYP a *Portfolio* of research and future options for impact.
IWYP HUB – Validation and Development

HUB Platform approach at CIMMYT:

- Brings all discoveries into a single source to compare and combine to seek synergies and generate added value
 - Trait validation
 - Precision phenotyping
 - Field evaluation
 - Prebreeding
 - Trials and distribution via IWIN

- Enables the IWYP to drive the discoveries/traits toward the market
Rounds of Discovery, Stacking, Trialing and Seed Multiplication Before 2050

<table>
<thead>
<tr>
<th>Year</th>
<th>Discovery & Validation</th>
<th>Prebreeding</th>
<th>Stacking</th>
<th>Trialing & Seed Incr.</th>
<th>Farmer's Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>IWYP 1st Call</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIFA - IWYP Call</td>
<td>6 + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWYP 2nd Call</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 - 10</td>
</tr>
<tr>
<td>Aligned Calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 - 8</td>
</tr>
<tr>
<td>IWYP 3rd Call</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 - 10</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWYP Hub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IWYP is a Long Term Continuous Program with Multiple Research Components
<table>
<thead>
<tr>
<th>Available products</th>
<th>Trait</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>IWYP39FP</td>
<td></td>
<td></td>
<td></td>
<td>IWYP64FP</td>
</tr>
<tr>
<td>Harvest Index</td>
<td>IWYP25FP</td>
<td>IWYP25FP</td>
<td></td>
<td></td>
<td>IWYP25FP</td>
</tr>
<tr>
<td>Spike development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Use Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture & photosynthesis</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td>IWYP80FP</td>
</tr>
<tr>
<td>Protocols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>IWYP39FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>IWYP64FP</td>
<td>IWYP48FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest Index</td>
<td>IWYP60FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike development</td>
<td>IWYP76FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Use Efficiency</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture & photosynthesis</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools/Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>IWYP39FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>IWYP64FP</td>
<td>IWYP48FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest Index</td>
<td>IWYP60FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike development</td>
<td>IWYP76FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Use Efficiency</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture & photosynthesis</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lines with traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
<td>AP01</td>
</tr>
<tr>
<td>Harvest Index</td>
<td>AP02</td>
<td>IWYP25FP</td>
<td>AP02</td>
<td>AP02</td>
<td>IWYP25FP</td>
</tr>
<tr>
<td>Spike development</td>
<td>IWYP76FP</td>
<td>IWYP76FP</td>
<td></td>
<td></td>
<td>IWYP76FP</td>
</tr>
<tr>
<td>Energy Use Efficiency</td>
<td>IWYP60FP</td>
<td></td>
<td></td>
<td></td>
<td>IWYP60FP</td>
</tr>
<tr>
<td>Architecture & photosynthesis</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transgenic lines with traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>IWYP39FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>IWYP61FP</td>
<td></td>
<td></td>
<td></td>
<td>IWYP61FP</td>
</tr>
<tr>
<td>Harvest Index</td>
<td>IWYP60FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike development</td>
<td>IWYP76FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Use Efficiency</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture & photosynthesis</td>
<td>IWYP80FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2nd IWYP Program Conference

- **20-24 March 2017 in Obregon, Mexico** (in conjunction with CIMMYT)
- This is a hands-on interactive meeting
 - Important event for sharing your science, getting and giving feedback, linking with other projects, building research teams, and integrating into the IWYP Science Program overall
 - Important for all IWYP and NIFA-IWYP Project Leaders and key Principal Investigators to attend and actively participate
 - Participants include research scientists, IWYP Management and SIEB members, IWYP SAC members, IWYP Private Partners, key CIMMYT scientists
 - Project Leaders will present project descriptions, progress updates
 - Discussions - Q&A, feedback to IWYP, brainstorming, planning, etc.
 - A day In the field for CIMMYT Visitors Day & IWYP Hub field tours

www.iwyp.org
Thank You

iwypprogdirector@iwyp.org
iwypprogmanager@iwyp.org

www.iwyp.org