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A B S T R A C T

The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots
collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in
sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has
much to offer in breeding as well as research. This review considers the ‘breeder friendliness’ of phenotyping
within three main domains: (i) the ‘minimum data set’, where being ‘handy’ or accessible and easy to collect and
use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively
new for most breeders, and requiring significantly greater investment with technical hurdles for implementation
and a steeper learning curve than the minimum data set; (iii) detailed characterization or ‘precision’ phenotyping,
typically customized for a set of traits associated with a target environment and requiring significant time and
resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming
more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built
from the high-throughput and detailed precision phenotypes. This review considers different contexts for phe-
notyping, including breeding, exploration of genetic resources, parent building and translational research to
deliver other new breeding resources, and how the different categories of phenotyping listed above apply to
each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of
complex traits and gene discovery.

1. Introduction

Phenotyping remains a cornerstone of plant breeding. Despite ad-
vances in genetics and the application of molecular technologies in crop
research [1], crop breeding still relies heavily on the expression of grain
yield and a handful of agronomically important traits for making se-
lections and defining commercial products. Where genes of major effect
are concerned, some valuable markers can be applied routinely in
breeding, including as part of genome wide selection schemes [2]. For
complex traits, however, most of the promising genetic approaches
must incorporate whole-genome information. These include genomic
selection, that models all markers in a framework that does not identify
marker-trait associations, but incorporates all individual marker effects
to predict yield [3], and QTL or genome wide association studies
(GWAS) that help to dissect complex physiological traits [4,5]. Gene
editing also holds promise, relying mainly on targeted mutation of

cloned genes with known effects on specific processes [6]. While impact
of such technologies can only increase with better genome sequence
and diversity information [7,8], developments in fields like epigenetics
testify to the complexity of how genes interact with each other and their
environment [9]. Nonetheless, there is an imperative to understand and
exploit the genetic potential of crop adaptation to maintain food se-
curity, given that maximum day and night temperature records are now
being broken routinely across continents, and episodes of drought
linked to mass human migration [10]. Such understanding will be un-
derpinned by rigorous phenotyping [5] if it is to have impact in crop
improvement.

In field crops, grain yield is the most highly valued phenotypic trait
for any breeder because it integrates all important traits and genes into
a biologically and economically useful reference point. This is the case
despite the large degree of interaction that cultivars show in terms of
grain yield with management practice, variation in weather and soil
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properties, and seasonal effects including biotic and abiotic factors
[11], not to mention the generally significant gap between experi-
mental plots and farmers’ actual yield. So far, no ‘genetic index’ has
been able to replace grain yield as the driver of economic impact in
breeding, notwithstanding the importance of genes of major effect and
their markers [12], although, progress is being made [13].

In addition to yield, there is an array of so called secondary traits
that have theoretical, and in several cases proven contribution to crop
performance. While these traits are also subject to genotype by en-
vironment interaction (G × E), they can add value to breeding for
targeted environments [14,15]. This is evident from the major invest-
ments that public and private breeding programs have made in high
throughput phenotyping (HTP) with the expectation of increasing ef-
ficiency and selection accuracy [16]. The power of HTP is largely a
function of proximal and remote sensing technologies which can mea-
sure crop characteristics throughout the season using spectral re-
flectance, in a non-obtrusive way and at a breeding scale [17,18].

However, precision phenotyping of traits -that cannot be estimated
at high throughput- is also becoming more commonplace. This is be-
cause as the growing environment becomes more challenging in terms
of adaptation, our physiological and genetic models will need to em-
brace new traits to achieve an understanding of the system as a whole.
An example would be the need to consider the role of roots in tran-
spiration and plant signaling [19] before gas exchange data at the leaf
or canopy level can be properly interpreted. Such comprehensive crop

models can better inform strategic crosses among groups of well char-
acterized candidate parents in order to stack complementary alleles
[15]. These considerations highlight the importance of translational
research that ends in pre-breeding, such that commercially relevant
discoveries in basic plant science are subject to reality checks in a
mainstream crop improvement context [20–22].

Plant breeding performs an outstanding service in maintaining food
security by not only achieving steady yield gains [23,24] but also in
protecting crops from a continuous onslaught of rapidly evolving pests
and pathogens [23], and maintaining high standards of end-use quality
[26]. Withreason, breeders have been reluctant in the past to adopt
physiological breeding approaches into already successful breeding
pipelines, due in large part to their complexity, cost and relatively
unproven status. However, accumulation of knowledge about physio-
logical and genetic bases of yield and adaptation, as well as access to
HTP methods are now facilitating their adoption by breeders. Wide
scale adoption of sophisticated phenotyping methods will only happen
if they add efficiency and effectiveness in terms of achieving targets. In
this sense, ‘breeder-friendly’ phenotyping should complement breeding
approaches by cost-effectively increasing throughput during segregant
selection, and adding novel sources of validated complex traits to
crossing blocks. In this regard, stringent criteria need to be applied
before incorporating new traits or phenotyping protocols into main-
stream breeding pipelines (Box 1).

‘Breeder-friendly’ is a somewhat plastic concept when it comes to

Box 1
Discovering and validating new traits and phenotyping protocols in a breeding context. Classes of Phenotyping.

In order to adopt new traits for strategic crosses or new phenotyping protocols into breeding pipelines, a series of criteria and validation steps
are required to indicate their potential in crop improvement, most if not all criteria should be met to ensure practical value and cost-benefit in
conventional breeding:

Prerequisites of new trait or selection protocol

• Trait shows association with one or more key performance characteristics (e.g. yield, yield component, lodging, disease or pest resistance,
end use quality) in target environments, or have strong theoretical basis to do so (e.g., if a novel trait can only be found in an exotic
background).
• Trait shows significant genetic variation in terms of its potential contribution to performance.• Trait presents workable repeatability/heritability.• Phenotyping methodology is able to discriminate different levels of trait expression with acceptable degree of repeatability across genetic
backgrounds and environments.
• Trait or selection methodology is not coupled to detrimental traits that reduce commercial value (i.e. linkage drag).• Marker-trait associations with significant marker effects are identified in appropriate populations/panels using GWAS and/or QTL analysis to
establish genetic basis of a given trait.

Proof of concept through pre-breeding and trait stacking (traits, markers, selection protocol)

• New trait is crossed into agronomically acceptable backgrounds, and selected for at appropriate generations –depending on genetic com-
plexity- to enrich for alleles associated with new trait.
• When trait is expressed in relatively homozygous backgrounds in lines (e.g. F5-F6 for in-bred crops) or hybrids (F1), pre-breeding populations
are evaluated to measure association between trait expression and key performance characteristic(s).
• New selection protocol is applied at appropriate stage(s) of breeding pipeline to determine its impact on performance characteristics
compared with a standard selection procedure.
• In the case of complex traits especially, the above criteria are also applied when additional trait(s) are combined in one or more genetic
backgrounds, in order to evaluate interactions among stacked traits, genetic backgrounds and environment.

Test of trait/selection protocol robustness in target environments

• Lines expressing the new trait(s) are trialed across representative target environments to estimate interaction with environment and con-
tribution to performance characteristics.
• New selection methodology tested across representative target environments to estimate its interaction with environment and robustness of
its association with performance traits.

Development of markers (marker validation)

• If a phenotypic trait delivers proof of concept, close-linked genetic markers can be developed (based on preliminary marker-trait associa-
tions/QTL) with the view to improving the efficiency and heritability of selection within mainstream breeding pipelines.
• Markers will need to be validated in a similar way as described above for traits.
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phenotyping. As well as throughput, other factors will determine the
cost-benefit of a phenotyping protocol, including, the difficulty of
achieving genetic gains in the target environment; the potential added-
value of improving the trait(s); and the feasibility of applying the
protocol effectively in the breeding pipeline. For the purposes of this
review, three main classes of field based phenotyping will be considered
(Box 2; Fig. 1) involving: 1) “Handy” phenotyping traits including
those either routinely measured, or at least readily accessible for phe-
notyping at a breeding scale with relatively little capital investment; 2)
“High throughput (HTP)” phenotyping traits which require some
training or specialization to measure and requires the construction or
purchase of specialized equipment; such data may also provide derived
traits via models; 3) “Precision” phenotyping traits which are generally
low throughput and/or expensive, but offer the potential for high pay-
off in terms of opening current bottlenecks to yield improvement.

There have been numerous reviews of HTP methods in recent years
[17,18,27–30] and the main purpose of this current review is to em-
phasize the current state of the art in ‘breeder-friendly’ phenotyping
applications. Most of the examples will come from wheat, though the
principles and technologies are broadly applicable to a wide range of
field crops. Phenotyping interventions can be applied at different points
in the crop breeding pipeline and their relative value to selection in the
breeding pipeline will also depend on target traits and target environ-
ments (Table 1). Therefore, the degree of ‘breeder-friendliness’ is not
absolute, but rather depends in part on the throughput required and
cost-benefit for each individual crop and breeding program. A trait that
takes several minutes or longer to measure would not be ‘friendly’ for
measuring thousands of genetic resources or progeny plots. However, it

may be useful and feasible when comparing dozens or even hundreds of
potential parents with the view to stacking complementary traits
through crossing, or for building physiological/genetic prediction
models that can be applied to thousands of selection candidates. The
traits presented (Table 1; Fig. 2), while varying in their level of
throughput potential, have mostly been measured successfully in the
field and have demonstrated association with yield or yield compo-
nents. Many have also been put to use in pre-breeding [5,14,15,31] if
not in a mainstream breeding context [32]. This review cannot be ex-
haustive in including all technologies available but focuses on some of
the more promising and relatively breeder friendly technologies with
broad application.

2. Phenotyping interventions at different stages of crop
improvement

Crop improvement pipelines typically involve a range of environ-
ments, planting methods and objectives spread out over time. The re-
lative merits of different phenotyping approaches will depend on all of
these (Box 1) as well as the trait of interest (Table 1). In summary, the
handy methods are best for single plant selections typically used for
relatively heritable traits (e.g. phenology, height, foliar diseases) in
early breeding generations or screening of genetic resources, while the
high throughput approaches lend themselves to measuring canopies in
yield plots. Precision approaches, being resource intensive, are usually
reserved for characterizing parental lines as well as studies to elaborate
the physiological and genetic bases of performance characteristics.
However, end-use quality evaluation requires precision laboratory

Box 2
Classes of Phenotyping.

Handy traits
“Convenient to handle, useful, within reach” are among the definitions of the word ‘handy’. Such traits in the breeding context typically

represent a minimum data set for agronomic evaluation plus a few easy to measure integrative physiological traits, indicating fitness when
comparing genotypes in season. At the harvest ripe stage this includes direct measurement of the ‘mission critical trait’ grain yield. Selection of
agronomic traits are essential for preliminary screening of large populations of uncharacterized lines such as segregating progeny or new
genetic resources. These agronomic traits are also typically required in national evaluations to determine suitability for release of advanced
lines as potential new varieties. For example, in Europe, new varieties are subject to DUS testing – Distinctiveness, Uniformity and Stability.
Hence, apart from grain yield itself, the minimum data set usually includes plant type -including height, lodging tendency, and phenology (i.e.
time to heading or flowering and physiological maturity), disease and pest resistance, seed characteristics and end-use quality. A few handy
physiological screens exist that can help indicate the adaptive potential of a genotype. Some examples are: assessing above ground vigor
visually, via imaging [33] or using the Normalized Difference Vegetation Index (NDVI), assessing leaf or canopy N status using SPAD meter or
NDVI [16], and estimating root capacity or relative gas exchange rate using canopy temperature under stress [34–37]. These handy pheno-
typing tools have relatively low cost.

High throughput traits
Traits amenable to HTP are typically measured by some kind of vehicle or gantry that provides remotely-sensed data sets at orders of

magnitude faster than possible by hand [33], on breeding plots that have likely already passed through a preliminary screen. This approach is
also favored to collect phenotypic data sets under multiple environments for physiological and genetic studies, since a large number of lines
can be characterized for a range of remotely sensed parameters throughout the growing season (Table 1) at relatively low cost. High-
throughput measurements of NDVI and other spectral vegetation indices can detect differences in physiochemical and structural properties of
the vegetation such as pigment content, hydration status, photosynthetic area and vegetative biomass (for details see Table 1). Similarly,
estimation of canopy temperature using infrared thermography has been used to screen for water status and stomatal conductance [36–39].
Digital imaging using standard red-green-blue (RGB) cameras is being exploited for 3D surface reconstruction and image pattern recognition
using sophisticated deep learning methods, which in turn provide estimations of traits such as plant height [40,41], tiller number [42], biomass
[43–45] and disease detection [46]. Some measurement protocols have been established while intensive development of smaller, cheaper and
more accurate sensors, especially of imaging systems, have facilitated their application on a wider range of vehicles including lightweight
unmanned aerial vehicles (UAVs) [30,47–49].

Precision phenotyping traits
Precision or detailed phenotyping is likely to encompass intrusive (i.e. destructive) as well as HTP and handy approaches. Because of the

greater time, detail and oftentimes specialized equipment needed for screening, it costs more, and it is typically limited to smaller panels of a
hundred or so lines that have already passed through preliminary screening and represent candidate parents for breeding, pre-breeding, and to
be used in genetic or mechanistic studies. Beyond those presented here (Table 1; Fig. 2), many other traits have been suggested as promising
for achieving yield gains and climate resilience, and readers are referred to work referenced herein; for overviews see -under drought- [50];
-under heat stress- [51,52] and for yield potential [53], and works referenced therein too. Precision phenotyping is associated with higher
human/capital investment and typically requires significant expertise and training, but the cost-benefit can be high where crosses result in the
stacking of traits that significantly boost genetic gains [22] and in cases where the precision phenotyping can be used to understand the
physiology and genetics of the breeding germplasm and then be developed in to handy and/or high-throughput phenotyping assays, and
potentially molecular markers for rapid screening.
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protocols for selecting both parents and progeny.
Some phenotyping tools can be applied at relatively high

throughput on single plants, such as the chlorophyll meter or the vis-
cous flow porometer. The latter was associated with genetic gains in
irrigated spring wheat [90], and shown to be cost effective according to
economic analysis [91]. Nonetheless, given the numbers of plants ty-
pically involved at early generations in a full scale breeding program,
the heterogeneity of the soil and unrepeatability of the plants inherent
in spaced planted trials, as well as the heterozygosity typical of in-
dividuals at early breeding stages for inbred crops, low cost visual se-
lection is normally favored.

Centralized breeding operations function if a range of targets can be
simulated through the application of different management factors,
such as irrigation, sowing dates, inoculation for disease, etc. These
managed environments can be augmented through strategic use of re-
mote phenotyping hubs (or ‘hotspots’) representing locations where
strong selection pressure for a given trait can be guaranteed (Fig. 3).

3. Phenotyping for different targets

In conventional breeding, genetic gains are achieved generally
through recombination of largely unspecified genes of minor effect by

Fig. 1. Examples of different classes and applications of breeder friendly phenotyping.
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intercrossing elite lines (“best with the best”), or introducing alien
chromatin into elite backgrounds typically associated with disease re-
sistance [92], and then selecting the best yielding progeny. Apart from
yield testing per se and measurement of end-use quality traits, the in-
tervention of phenotyping in the above has been largely restricted to
‘handy’ traits (Table 2) [26. The approach has been highly successful in
wheat [23,24]. At CIMMYT and many large programs, breeding is
conducted in relation to a range of target environments where typically,
near optimal conditions are used to estimate yield potential, and a
series of managed biotic or abiotic stress environments are also em-
ployed according to target profiles [93]. The target environment de-
termines first which are the main traits of interest (based on trait
models) and secondly, which classes of phenotyping are required, de-
pending in part on urgency and cost-benefit (Box 1). Examples for a
range of strategic breeding goals are presented in the next section.

3.1. Yield potential

While in crops like wheat, maintaining disease resistance can con-
sume many of the resources for crop improvement, increasing the genetic
yield potential of crops is essential since it is a key incentive for most
farmers when it comes to variety replacement. Since genetic gains need
to increase above current rates if global demands for cereals are to be met
[94], attention has turned to yield potential related traits, especially
radiation use efficiency (RUE) [95–99]. However, increased RUE alone
does not guarantee increased yield unless additional assimilates result in
more and/or larger grains, and increased RUE itself may require addi-
tional uptake efficiencies of water and nutrients. Experiments in various
cereals have shown that a high demand for assimilates —determined by
sink strength of the grains—can stimulate the supply of photo-assim-
ilates, and vice-versa. The studies have demonstrated that well-managed
wheat crops typically carry excess photosynthetic capacity, and as a

Fig. 2. Trait hierarchy in relation to approximate degree of integration, depicting some of the established drivers of biomass (source) on the left of the plant, and
harvest index (sink) on the right side. Abbreviations: Int = interception.

Fig. 3. Global network of precision field-based wheat phenotyping platforms of the CGIAR Program WHEAT (see http://wheat.org), developed with the support of
co-investing national agricultural research institutes. The objective is to generate multi-location phenotypic data on prioritized traits, under defined good practices,
and fostering germplasm exchange. The selected locations represent key environments, for example, hotspots for specific diseases and future-climate analogue sites.
This model opens opportunities to increase coordination in wheat phenotyping, avoiding duplications, and building on efficiency and capacity for research. Green:
functional platforms for particular traits, Yellow: planned platforms. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).
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result, increasing photosynthetic potential does not necessarily optimize
grain number as shown by the negative association observed between
harvest index and biomass [100]. Therefore, to achieve full expression of
yield potential, it will be necessary to optimize the source:sink dynamic
by ensuring that expression of grain set matches the photosynthetic po-
tential of current and future genotypes.

Evidence for genetic variation in source:sink balance (SSB) and its
importance in boosting yield and radiation use efficiency (RUE) in field
grown plots has come from various sources, including studies with
cytogenetic stocks (see [101]). More recently, a cross designed to
combine different traits associated with high sink strength in high RUE
backgrounds resulted in doubled haploid lines expressing exceptional
yield and biomass in a high yielding environment in Southern Chile
[234], further supporting the idea that the right combination of sink
traits can permit increased expression of RUE. In addition, results of the
Wheat Yield Collaboration Yield Trial (WYCYT) have shown significant
increases in yield potential across international wheat targets in the
selected progeny of crosses designed to combine favorable sources of
source and sink traits with high RUE [31]. Subsequent rounds of pre-
breeding have confirmed further yield progress [102,103].

Since stacking “source” and “sink” related traits (Fig. 2) via strategic
crossing is gaining a body of evidence to support its efficacy – while at
the same time involving intuitively valuable traits for increasing po-
tential yield (source) and harvest index (sink), respectively-, the sub-
sequent section will discuss the phenotyping approaches required to
measure these traits in a mainstream breeding context.

3.1.1. Source: (Light interception and RUE)
Biomass of elite cultivars has increased modestly in recent years

[100,104–107]. Although these changes have come about as a result of
selecting for superior grain yield rather than for the physiological traits
per se, it is feasible to select for them directly. Furthermore, there is
clear evidence for expression of superior biomass and related-traits
(such as light interception and RUE) in many genetic resources [5,108].

Greater total biomass can result from increasing crop light inter-
ception (LI) and radiation use efficiency (RUE) or their component
traits (Fig. 2). Of the RUE related traits shown in Fig. 2, canopy ar-
chitecture, and root capacity under abiotic stress [34] are the only ones
that might be considered handy or high throughput. Canopy archi-
tecture is typically evaluated with a visual score which may be based on
digital images, and root capacity can be estimated using CT, at least
under stress [34,35]. The other traits depicted in Fig. 2 require more
precision approaches.

For example, total canopy light interception is estimated relatively
accurately with a light bar or ceptometer through comparing incident
light above and below the canopy [109]. Since LI is not static, it is best
measured at predetermined growth stages, and close to when the sun is
at its zenith to maximize resolution between genotypes. Use of a cept-
ometer would certainly be considered a ‘precision’ approach. However,
since LI is associated with ground cover, more ‘handy’ or HTP ap-
proaches include measuring NDVI either directly [29] or using prox-
imal sensing tools like UAV carrying RGB or multi-spectral cameras
[110]. The main restriction is that NDVI only shows good resolution
between genotypes at relatively low canopy density (i.e. leaf area
index< 3), and therefore has application either under abiotic stress
when vegetation is reduced, or at early stages of canopy development
under more favorable conditions [55]. Chlorosis or loss of green area is
associated with reduced LI during the senescence stage of grain-filling
(or earlier under biotic and abiotic stress), but cannot be estimated by
measuring LI directly since chlorotic and dead leaves also intercept
light. However, the ‘stay-green’ trait is well estimated using NDVI that
provides an integrated greenness index of the whole canopy [83]. Flag
leaf ‘stay-green’ can also be estimated from repeated SPAD measure-
ments (every 4–7 days) in the same culm [54].

Reliable estimates of biomass and RUE require precision ap-
proaches, specifically growth analysis (i.e. the destructive samplingTa
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of plant organs over time). Biomass is sampled at different growth
stages to measure changes in dry matter accumulation, which to-
gether with estimates of LI, enable RUE to be estimated at discrete
growth stages. Genetic diversity has been identified for RUE at dis-
tinct growth stages [5] which may perhaps permit their alleles to be
stacked through strategic crossing [5]. On this note, growth analysis
is an integrative and fairly precise measure of net carbon assimila-
tion and RUE compared with say measuring gas exchange, which
requires expensive equipment and is much less integrative both in
terms of duration (readings typically being snapshots in time) and
the photosynthetic organs measured (usually just leaves fully ex-
posed to light).

As described earlier, while remote sensing protocols to estimate in
season biomass and LI exist (Table 2), currently the resolution between
genotypes is more suitable for HTP than precision needs. Jin et al. [87]
provide a methodology to estimate end-of-season biomass from max-
imum canopy height (around flowering) and stem count/diameter es-
timates using ground-imagery after harvest. However, they acknowl-
edge that while this estimation of ‘bio-volume’ has a high correlation
with end-of-season biomass, it is also well correlated with anthesis
biomass as it is mostly a structural description, not accounting for su-
gars etc. However, Furbank et al. [28] outline examples of how HTP is
beginning to deliver on the ability for breeders to estimate RUE.

While LI and RUE are the most integrative estimates of photo-
synthesis and can be used directly to boost yield through their combi-
nation with positive expression of HI, the principle of trait stacking
requires that diversity for their component traits (Fig. 2) also be con-
sidered as part of a translational research approach to evaluate their
potential to contribute to genetic gains. For example, favorable ex-
pression for the components of source traits can be crossed in order to
stack such traits as part of a parent building exercise aimed at sig-
nificantly boosting biomass. These could include spike and leaf photo-
synthesis, pigment composition and light reactions, the dark reactions
of photosynthesis related to Rubisco and the Calvin cycle, as well as
respiration costs for growth and maintenance [97]. These traits are
generally low throughput which is why they can only realistically be
considered in the context of parental selection and parent building.

For example, a study of diversity in Calvin cycle enzymes and
Rubisco within the Triticeae demonstrated the potential benefit of re-
placing Rubisco of T. aestivumwith Rubisco from Hordeum vulgare or the
wild species Aegilops cylindrica, in terms of achieving higher assimila-
tion rates [111]. Another photosynthetic trait recently identified which
offers to significantly boost RUE, is related to the speed of induction of
photosynthesis on shade to sun transitions [99]. Work under an Inter-
national Wheat Yield Partnership (IWYP, https://iwyp.org/) research

project is attempting to identify genetic diversity for this trait in wheat
germplasm.

The main restriction to selecting for photosynthetic and respiratory
traits even at low numbers is that many require expensive equipment
and highly trained technicians. However, the use of spectral reflectance
to estimate photosynthetic rate [62] and respiration [112] at leaf level
have been reported as well as at canopy level [113]. In particular, the
inversion of integrative canopy radiative transfer models and the esti-
mation of sun-induced chlorophyll fluorescence have shown their po-
tential to track dynamic changes of photosynthetic traits at canopy
level. Chlorophyll fluorescence is directly link to the electron transport
rate in the light reaction of photosynthesis, and its passive estimation
using spectroscopy has been used to detect natural and stress induced
variations in photosynthetic activity at canopy level [114–117]. All
these approaches currently lack refinement for routine use in precision
phenotyping for parental selection but have further potential for im-
provement.

3.1.2. Sink: (harvest index and related traits)
According to the majority of published studies, most historical ge-

netic gains in cereals are related to increases in harvest index (HI)
[23,118]. When combined with high-input agronomy, plant height re-
duction (Rht) genes in wheat and their equivalent in rice and other
crops caused dramatic increases in HI and productivity in the 1960s and
'70s [119]. However, subsequent increases in HI are less well under-
stood and genetically complex. Therefore, HI still expresses large ge-
netic variation –typically 0.40 to 0.55 in modern wheat- [100,118],
depending on plastic response to environments as well as underlying
genetic background effects, both of which are poorly understood. Ex-
pression of HI can be considered integrative since many physiological
processes affect it (Fig. 2). Unfortunately, HI has not been amenable to
high throughput phenotyping, and is rather estimated from the ratio of
yield and above ground biomass at maturity. Using a growth analysis
type approach at physiological maturity, the components of HI can also
be calculated, including grain number, grain size, spike number and
grain number/weight per spike. Other spike fertility and dry-matter
partitioning traits can also be measured using more detailed growth
analysis, including spike dry-matter to calculate, spike partitioning
index at anthesis [76], number of grains per spikelet, and fruiting ef-
ficiency or grains per unit spike DM at anthesis [120].

Research has clearly linked these traits to yield but the lack of high
throughput screens has limited their use in mainstream crossing. Recent
advances based on digital RGB cameras or prototypes with threshers
and line scan cameras offer some promise for automation, achieving
1000 plots/day [121,122]. The development of reliable markers is

Fig. 4. (a) Diagram of applied pushing force at canopy level to measure Canopy Strength (CSt), and (b) biplot with correlation between CSt and lodging related traits.
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expected to help stack sink related traits such as grain number and
weight [123], and in pre-breeding at the IWYP-Hub several trait and
marker combinations are being tested through translational pre-
breeding research approaches (https://iwyp.org/).

Crop phenology has a major influence on grain sink determination.
To optimize seed set and grain weight potential, the timing of the
sensitive reproductive growth stages has been genetically fixed largely
to avoid periods of abiotic stress. The most sensitive developmental
stages in cereals have been shown to be rapid spike-growth phase (from
initiation of booting until heading), meiosis, and pollination [124,125].
Although these phenological stages can generally be observed by eye,
sequential remote sensing has potential to score for ear emergence and
possibly other stages at a breeding scale [126].

Better understanding of the physiological and genetic components
of phenological development are expected to lead to more optimal and
stable expression of HI across a wide range of environments and as a
result of better targeted breeding. To achieve this, more detailed ana-
lysis of early phenological patterns (e.g. 107), will likely be needed for
parental selection and/or in the development of reliable molecular
markers, so that stacking of the appropriate alleles can be achieved.

Improvements in sink strength can imply changes in plant organ
partitioning that potentially result in negative tradeoffs with the func-
tionality of the plant as a whole. For example, little is known about
possible tradeoffs with root growth when above ground biomass is in-
creased, although studies of water uptake suggest that there has not been
a negative consequence associated with increased yield and biomass in
semi-dwarf wheat so far, even under reduced irrigation [128]. Other
studies suggest that the Rht gene in wheat decreased root capacity [129].
While it is well known that the Rht gene also reduced investment in the
stem mass, it did not compromise structural integrity in terms of lodging
tendency as the reduction in height lowered the plants center of gravity.
Nonetheless, increased partitioning to the spikes could at some point
compromise investment in the root and stem strength necessary for a
stable structure, especially given that further reduction in height is not
compatible with higher yielding crops with heavier spikes [118].
Therefore, it is important to be able to phenotype and select for the traits
associated with lodging resistance to protect genetic gains.

3.2. Lodging

Lodging is a persistent phenomenon affecting wheat and other crops
that involves the interaction of plants with abiotic (wind, rain, soil) and
biotic (e.g. diseases) factors and the crop management (e.g. fertilizers,
irrigation schemes, plant growth regulators) [130]. Reductions of grain
yield have been estimated from 7 to 80 % [130–137] together with
reduced grain quality and greater drying costs [130,138,139]. Lodging

has been reported to be a potential problem for wheat in the UK
[138,140], Canada [141], China [142], India [143], Mexico [144],
Western Europe [132] and Australia [137]. Plant breeders commonly
classify wheat cultivars for lodging resistance only if a natural lodging
event occurs. However, lodging events are not consistent in every crop
cycle nor do the lodging factors affects fields uniformly. These aspects
make difficult the continuous identification and removal of lodging
susceptible genotypes throughout the breeding cycle [145].

A set of stem/root biophysical properties related to the stem and
anchorage strength (lodging-related traits) [84,146] can be used to
screen germplasm for lodging resistance, enabling breeders to classify
genotypes by type of lodging (root/stem lodging) and more im-
portantly, in the absence of natural lodging. Models indicate that in-
creasing stem/anchorage strength would be necessary to improve stem/
root lodging resistance in winter wheat [147] and spring wheat [148].
Previous work have shown wide genetic variation for these lodging-
related traits [147,149,150]. Nevertheless, measuring these traits cur-
rently requires significant investment of time in the field and laboratory
[147,150]. According to [85], optimizing lodging methods would be
feasible to screen parental lines and small exploratory genetic diversity
panels, but not sufficiently high throughput to screen very large num-
bers e. g. more than 1000. Optimized lodging methods are prerequisite
to develop genetic markers for lodging resistance. Several promising
quantitative trait loci QTL have been reported [151–161].

A ‘breeder friendly’ and faster phenotyping tool has been reported
to assess lodging resistance directly in the field with positive results
[145,151,162]. This instrument’s operational principle is to measure
stem strength (single or multiple stems) when an external pushing
forceis applied. A similar approach followed at CIMMYT wheat pro-
gram has led to the testing of a new trait named Canopy Strength (CSt).
This friendly phenotyping trait consisted of capturing the pushing force
applied to bend the wheat canopy (stems in 0.3 – 0.5 m of the ex-
perimental plot) at 45° angle from its vertical position (Fig. 4a)
(‘Pushomics’). Since it takes only a few seconds to measure this trait, it
would be adequate for large scale screening of genetic resources. Biplot
from a principal component analysis indicated that canopy strength was
strongly positively correlated with stem diameter (D) and to a lesser
degree with stem strength (SS). A weaker positive correlation was also
found for root plate spread (RPS) and structural rooting depth (SRD). A
key finding was the strong negative correlation between canopy
strength and lodging score (Lscore) (Fig. 4b, unpublished data). Despite
canopy strength still being a trait currently under testing, these results
are highly promising.

3.3. Abiotic stress

Strategic crosses that combine parents with good expression of
source and sink has also shown impact on breeding under abiotic stress
[31,163] and have, for example, led to the release of three wheat
varieties in Pakistan. This approach functions because when a genetic
resource like a landrace, for example, shows good expression of biomass
under drought, it can be concluded that it either expresses highly effi-
cient water budgeting or has the root capacity to access subsoil water
[108], either trait being potentially valuable. However, what a landrace
typically lacks is good expression of HI. Therefore, crossing (and
backcrossing) it with an elite line and selecting among progeny for
handy traits like cool canopy and kernel size -as well as grain yield- is
likely to facilitate the identification of segregants where the useful traits
from both the landrace (biomass) and the elite line (HI) have been
successfully stacked. Similarly under heat stress, a genetic resource
with large biomass relative to check lines encompasses unspecified
mechanisms of heat tolerance, even if poor local adaptation does not
permit good expression of grain yield. Crossing with moderately heat
tolerant lines that express high HI under the same stressful environment
has been shown to produce some progeny with complementary alleles
indicated by yield gains [31].

Fig. 5. Association of root dry weight below 60 cm with (i) yield (R [2] = 0.35)
and (ii) canopy temperature (CT) (R [2] = 0.88) during grain filling (gf) for 16
wheat sister lines of Seri/babax under water-limited conditions, NW Mexico.
Green circles represent yield; red circles represent canopy temperature. Data
from [34]; figure published in Reynolds and Pinto [165] based on data from
Lopes and Reynolds [34]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
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Most of the traits presented in Fig. 2 would have likely value under
abiotic stress, even if the underlying mechanistic and genetic bases are
not entirely the same among diverse environments. This highlights one
of the advantages of the physiological breeding approach currently.
Namely that since so few physiological traits have been applied in
mainstream breeding, there is a significant opportunity to stack traits
that have not been previously considered in a deterministic way [15]
and for which large genetic variation is typically found even among
relatively elite material [164], and more so in genetic resources [5]. A
principal example mentioned already, is the selection for effective root
systems to improve access to water. Extensive work in populations of
random inbred lines –controlled for genes of major effect- has shown
clear benefit of responsive root systems and even some common genetic
basis under both heat and drought stress environments [35]. The trait is
well estimated by canopy temperature (Fig. 5), one of the traits that are
part of the breeders ‘handy tool kit’.

Many other traits have been proposed to improve source under
abiotic stress. These include epicuticular wax, a handy trait being easy
to observe by eye, associated with photo-protection since it can reduce
radiation load on the leaf. Recent work showed it to be amenable to
high throughput screening using SRIs [166] though it has not been
systematically studied for its potential impact on genetic gains. On the
other hand, the precision trait carbon isotope discrimination has been
well researched from theory all the way to breeding for its impact on
increasing transpiration-use efficiency, providing proof of concept for
its value in water-limited environments in Australia [167].

In terms of sink traits specifically for abiotic stress, inadequate
meiosis and pollination may reduce grain set [125], while remobiliza-
tion of carbohydrates reserves in the stem can increase grain size
[78,79]. The former can be observed relatively easily by examination of
the spike in the field, while the latter requires a laboratory protocol.
Work by crop physiologists at CSIRO in Australia have demonstrated

Fig. 6. Phenotyping options for arthropod resistance on possible plant responses to arthropod attack. a) Resistant and susceptible wheat genotypes to S. graminum
responses after 14 days of exposure; b) Chlorophyll content relationships between resistant and susceptible plants under S. graminum infested and non-infested
conditions [197]; c) Absence of visual symptoms upon feeding by R. padi; d) Biomass loss caused by R. padi in resistant and susceptible plants [200].
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the breeding value of a number of other physiological traits for
adapting to drought and heat, and the following reviews are re-
commended [14,50,52].

3.4. Biotic stress: phenotyping for resistance

The conventional selection for disease resistance is a labor-intensive
activity that requires well trained eyes to identify pathogens and to
score the level of infection. Clear guidelines and standardizations are
well established in current protocols, but ultimately the quality of the
evaluation still relies on the experience of the evaluator, making it
prone to subjectivity. Several studies have shown how the use of sensor-
based approaches can potentially overcome this subjectivity by en-
suring accuracy and repeatability for disease detection, while in-
creasing the capacity to evaluate larger populations in a shorter amount
of time [46,168–172].

Pathogen infections would usually imply changes in plant optical
properties by inducing alterations in the pigment composition, in the
structural properties of the plant tissues or in metabolic processes.
While evaluating these changes at leaf level can be relatively easy, at
canopy level it can represent a challenge, first because only a fraction of
the whole vegetation is visible to sensors, and secondly due to con-
founding effects such as the canopy structure, illumination conditions
or similar symptoms produced by abiotic stresses [173]. The use of
imaging systems helps to partly overcome this issue as they permit the
evaluation of pathogenesis on individual leaves as well as integrative
evaluations over the whole canopy. For instance, high-resolution digital
RGB imaging has been used at canopy level to detect and quantify vi-
sual symptoms in individual leaves using analyses of spatial patterns,
and changes in image color and texture [174–176]. The main limitation
of RGB imagery is that it is restricted only to optical changes in the
broad spectral ranges of red, green and blue.

Multi- and hyperspectral imaging systems are more powerful tools
to detect specific changes in the spectral reflectance of the vegetation
due to pathogenesis. Although they usually lack the spatial resolution of
digital RGB cameras, their spectral range and spectral resolution make
them more suitable to detect changes in leaf tissue reflectance in the
visible (i.e. 400−700 nm) and in the near infrared (i.e. 700−1000 nm),
which have been reported as the most sensitive to pathogen infections
[177,178]. Spectral analysis for disease discrimination and quantifica-
tion range from simple vegetation indices [179,180] to sophisticated
statistical analysis that consider changes in the whole spectrum [181].
Alternative approaches to RGB and spectral imaging are thermography
and fluorescence spectroscopy. The former has been used at plant and
canopy level to detect changes in transpiration rate during early stages
of disease infection [46,182], whereas the latter can be used to detect
the accumulation of compounds in leaf tissues related to disease re-
sistance [183] and changes in photosynthetic rate induced by patho-
genesis [184].

Although the sensitivity of different imaging system to detect

pathogens has been proved, there is still some way to go to have a fully
functional approach for breeding. RGB imagery or multispectral ima-
ging for vegetation indices can be easy to implement in the field on
different moving platforms such as field carts or UAVs, but their use
usually requires a minimization of possible confounding effects in the
observed trials and they might not have the capability to discriminate
between pathogen species. The information provided by hyperspectral
imaging might be useful to discriminate between diseases and other
abiotic stresses, but the analysis of this kind of data is more complex
and at the moment its use relies mainly on empirical relationships that
are not easy to understand, nor to apply generically. Consequently,
further research is required to achieve easy-to-use but reliable tools for
disease resistance selection under field conditions.

3.5. Biotic stress: phenotyping for disease resistance

Incorporation of insect resistance in crop cultivars is a genetically
determined management method that 1) is environmentally friendly; 2)
is readily available to farmers in the form of a new cultivar; 3) increases
farmers profit, both directly via protecting yield and indirectly via re-
ducing insecticide use; 4) limits the spread of yield-reducing insect-
spread viral diseases, and 5) can be easily combined with different
farming systems, including low input ones.

The most important factor that limits breeding for resistance to
arthropods in general, is the difficulty of phenotyping large sets of
germplasm. This reduces the possibility of finding new diverse re-
sistance sources with adequate levels of protection. Furthermore, se-
lection methods cannot be easily applied in established breeding pi-
pelines, especially not in large breeding programs. These factors are
most restraining in the case of certain insect pests that do not leave
visible feeding symptoms on plants [185], thus making it most difficult
to identify resistant germplasm and breeding in consequence.

Conventional aphid resistance screening is time consuming and
difficult to apply in large germplasm sets. It frequently requires several
replicates, destructive plant sampling methods, and is often proble-
matic to conduct in the field. Under laboratory/greenhouse conditions
is relatively easy to screen for resistance to feeding damage by symp-
tomatic insect species compared with screening for resistance to those
that fail to elicit symptoms. Damage to the plants caused by non-
symptomatic pests is only evident once the plants are stunted because
of high aphid population levels and the growth of sooty molds due to
the presence of honey-dew on the plants.

Remote sensing can be used to effectively identify aphid damage in
the field and distinguish it from other plant stresses in wheat (Fig. 6).
For example, it is possible to differentiate between hot spots of damage
caused by Diuraphis noxia (Mordvilko) and Schizaphis graminum (Ron-
dani) both of which give rise to visible plant symptoms [186–190].
Furthermore, it may be possible to predict with high levels of con-
fidence which plants are more prone to mite attack [191]. Furthermore,
advances have been made with satellite imagery to identify at large

Table 3
Principal sources of within-site environmental variation that confound field-based research (adapted from Reynolds and Pinto [146]).

MAIN FACTOR SUB FACTORS

Temperature Day-day variation, extremes in max/min temperature; fluxes during data collection.
Light Day-day variation in light due to cloud cover; time of year; fluxes during data collection.
Rain Season to season, and within growth cycle variation in precipitation patterns.
RH/VPD* Largely a function of all the above, these affect transpiration and canopy temperature.
Irrigation Spatial and temporal variation in water application.
Nutrition Non-uniform distribution/uneven access to nutrients.
Soil Variation in: depth; moisture profile; physical & chemical properties of soil.
Wind Fluxes of wind speed during data collection can affect some traits.
Pathogens Genetic variation in susceptibility; soil pathogens hard to detect and control.
Pests Timely detection is a challenge; genetic variation in susceptibility; birds and mammals especially hard to control.
(Diurnal cycles) This source of variation is not directly related to environment per se but needs to be considered when developing measurement protocols.

* RH = relative humidity; VPD = vapor pressure deficit.
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scale damage caused by aphids [192,193], which should help with
modelling their epidemiology, virulence and response to control mea-
sures.

The implementation of remote sensing to screen for arthropod re-
sistance is highly dependable on the physiological responses of the
plants caused by pest species. Leaf surface temperature, photosynthetic
activity, gas exchange, and carotenoid concentrations change upon the
infestation of various phloem sap feeders [194–196]. All of these re-
sponses are associated with specific spectral features. However, the
remaining question is if those responses are differential between po-
tentially resistant and susceptible plant genotypes. It is obvious for
some aphid species that these responses differ between resistant and
susceptible germplasm, for instance, Aphis glycines Matsumura, S. gra-
minum and D. noxia tolerance can be efficiently assessed using handy
chlorophyll measuring devices, up to the level of using such measure-
ments to identify resistance genes in mapping populations and
screening breeding advanced lines [197–199]. Hence, remote sensing
based measurements need to be further explored, particularly for the
cases of insects that do not cause symptoms visible to the human eye,
for instance in wheat, the aphids Rhopalosiphum padi L. and Sitobion
avenae (Fabricius).

4. Phenotyping for genomic studies

Phenotyping for genomics studies is a key translational research
activity if reliable markers are to be developed for molecular breeding

approaches. The more accurately traits are phenotyped across large
populations the more likely they will lead to gene discovery, thus, re-
mote sensing tools must deliver both throughput and precision in this
context. The upper limit of the maximum phenotypic variance that can
be explained by a marker is limited by the heritability estimates of the
trait. Though there generally remains missing heritability-unexplained
percentage of phenotypic variation even after considering all major and
minor effect QTLs/genes, the generally low heritability of many traits
could be contributed by the error in phenotyping together with the
genotype × environment interaction [201]. These constrains, when
considered together makes accurate phenotyping using HTP a highly
efficient tool, to avoid variation in the genotypic value due to temporal
and spatial differences while field phenotyping. For example, it has
been shown that HTP approaches using UAVs are more accurate when
compared to ground based proximal sensing of CT and NDVI in large
experimental fields [202]. Another example is the use of high
throughput multispectral and hyperspectral indices from an aerial
platformtaking non-destructive measurements and revealing gene ex-
pression patterns and drought responses to different levels of plant
water status in field conditions. This study was on a single wheat
genotype “Chinese spring”, but through HTP a large amount of phe-
notypic data was generated which was associated with the RNAseq data
to identify gene clusters for drought tolerance in wheat [203].

In the context of precision phenotyping for genetic studies, the de-
sign of the experimental population and experimental conditions is a
key and critical consideration to obtain meaningful phenotypic data.
Confounding effects like phenology associated with genes of major ef-
fect can mask the identification of QTL [163]. Genetic mapping popu-
lations aimed at discovering minor gene effects can be designed ex-
plicitly to avoid such confounding factors [4] by using well-adapted
common parents that match in terms of genes of major effects. For di-
verse panels of material as used for genome wide association studies
(GWAS) [204,205] it is critical that genetic structure is accounted for as
well to avoid other confounding effects [206].

While phenotyping for genotyping, it is important to consider the
effects of already identified genes in the assembly of the population; in
wheat this includes the major genes of vernalization (VRN), photo-
period (Ppd), and plant height (Rht) that can have profound effects on
phenotypic data. For example, a huge variation in flowering time due to
Vrn or Ppd genes can result in considerable variation for economically
important traits like yield and grain quality. If canopy based pheno-
typing is conducted across an array of genotypes, plant height (Rht
genes) in particular can confound phenotyping, especially when tar-
geting high yield environments where plant height differences can be
large and cause shading as well as differences in boundary air layers
that impact on gas exchange.

An example of a population which was assembled to avoid the
confounding effect of phenology in spring wheat is the Wheat
Association Mapping Initiative (WAMI) population [83]. In addition,
several recombinant inbred line populations were developed in spring
wheat with narrow ranges of phenology [4,207]. Genetic mapping in
these populations for yield potential, drought and heat stress have
identified QTLs for grain yield independent of phenology and plant
height effects. These studies on the populations are also able to identify
pleotropic effect of genes (e.g. TaGW2 genes in chromosome 6A af-
fecting several traits). Interestingly, a QTL mapping population devel-
oped with a very narrow range of flowering time (3 days) did not
identify any major genes for flowering time, but identified a novel re-
gion in chromosome 6D associated with yield and some yield compo-
nents contributed by a synthetic derivative line [207].

Table 4
Examples of traits affected differentially by environmental conditions at the
time of measurement (from Reynolds and Pinto [146]).

SENSITIVE: MAIN CONFOUNDING FACTOR(S)

Canopy temperature Cloud, wind, temperature drift, irrigation status
IR-based spectral indices Cloud, wind, temperature drift, irrigation status
Gas exchange Irrigation status
Water relations Cloud, wind, temperature drift, irrigation status
Lodging traits Wind
Plant growth regulators Cloud, temperature drift, irrigation status
Metabolites/enzymes/RNA Cloud, temperature drift, irrigation status
NOT SENSITIVE:
Yield and yield components
Leaf pigments (like chlorophyll)
Pigment based spectral indices
Structural characteristics and partitioning (i.e. growth analysis including roots)
Isotopic composition (e.g. stable carbon isotopes)
Stored water-soluble carbohydrates (as far as we know)
Genotype (DNA extraction)

Table 5
Examples of canopy level traits affected differentially by growth stages at the
time of measurement.

SENSITIVE: MAIN CONFOUNDING FACTOR(S)

Canopy temperature Ground cover/tillering, spikes,
chlorosis, height

Water relations Leaf age
Infrared-based spectral indices (canopy) Ground cover, canopy architecture,

leaf age
Leaf pigments (like chlorophyll) Leaf/canopy age
Pigment based spectral indices Leaf/canopy age
Stored water-soluble carbohydrates Organ, growth stage
Structural characteristics and

partitioning
Stage of life cycle

Isotopic composition (e.g. stable carbon
isotopes)

Organ, growth stage

Centre of gravity (for lodging) Plant age and weight of spike
Gas exchange Organ, organ age, source:sink status
Metabolites/enzyme activity Diurnal cycle, organ, tissue, organ age
Plant growth regulators Diurnal cycle, organ, tissue, organ age
RNA Diurnal cycle, organ, tissue, organ age
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5. Overcoming confounding factors associated with field
phenotyping

5.1. Environment

Crop scientists usually prefer to conduct phenotyping under field
conditions where results can be more realistically extrapolated to target
cropping systems. It has been shown that complex traits measured in
controlled environments are not well related to expression in the field
[208]. For example, soil temperature profiles in the field are very dif-
ferent to those seen in pots and have significant interaction with plant
growth response [209]. However, since field conditions are inherently
variable, repeatability or broad sense heritability of genetically com-
plex traits can vary considerably due to interaction with environment,
including weather as well as planting method and other aspects of crop
management. Therefore, it is important to either measure or control
these environmental factors as best as possible, so that heritability is

Fig. 7. Interaction among environmental factors and crop specific traits indicating how crop development, growth, and grain yield characteristics are influenced by
one or multiple environmental factors. Yellow boxes correspond to environmental variables and green boxes correspond to affected crop trait. Black arrows indicate
the direct or indirect influence of environmental variables on crop traits, and the influence of crop traits among themselves. Red arrows indicate possible damaging
influences on crop traits. (Figure drawn by Diego Pequeno). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).

Fig. 8. Representation of the trade-off between the main factors to consider
when choosing a protocol.
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maximized as traits move through a selection pipeline. Main sources of
variation in the environment that should be measured or controlled are
summarized below in Table 3.

All of the factors in Table 3 will have a cumulative effect on yield and
on most other traits. However, in terms of phenotyping per se, the ex-
pression of some traits are quite sensitive to one or more environmental
factors at the precise time of measurement. For example, the spectral
water index or canopy temperature can be affected almost in-
stantaneously by temperature, cloud cover, and wind, as well as being
influenced on a day to day basis by irrigation status and diurnal cycles.
For these kinds of traits, developing and applying well defined protocols
(see Pask et al. [48]) can help minimize the confounding effects of en-
vironment, and improve heritability of their expression. Some of the
main traits that are directly affected by such environmental factors are
listed in Table 4. Though not well studied, traits that are affected by
dynamic processes such as gas exchange may show diurnal rhythms that
can confound data and should be considered in the experimental design
of protocols. However, the sensitivity of traits to the environment can
also be put to good use. For example, traits affected by water relations
like canopy temperature or water index [61] when measured under hot,
irrigated conditions reflect the ability of the vascular system to match
evaporative demand in real time [35], while the same trait measured
without irrigation has been shown to be associated with root depth [34].

5.2. Growth stage and growth habit

The expression of most traits interacts with growth stage. This is
obvious when evaluating phenology or conducting growth analysis, for
example. However, it can be less obvious for other traits where mor-
phological or anatomical changes are not visible or quite subtle
(Table 5). Taking again the example of canopy temperature, expression
is affected at a number of factors; by ground cover due the warming
effect of the soil, by the presence or absence of spikes which tend to be
warmer than leaves, and by chlorosis as senescence will affect stomatal
aperture. When measuring traits that are affected by height, ground
cover, morphology and degree of development, it is crucial to design
protocols that avoid these confounding effects. One of the easiest ways
to achieve this is through experimental design where confounding
factors like height and maturity class are contained within well bor-
dered sub-blocks. Another alternative is to measure traits on different
genotypes at comparable stages of development, however, this can in-
troduce other confounding variables associated with weather and irri-
gation status that also vary over the cycle.

While growth stage can affect growth habit for any class of material,
exotic materials like landraces and other non-adapted germplasm
generally present a larger problem for phenotyping due to their more
extreme growth habits and wide range of phenology. The most obvious
are variation for height and phenology. When evaluating diverse ma-
terials in relatively small yield plots, taller lines will have an ‘unfair’
advantage in terms of intercepting more radiation. Similarly lines that
are earlier maturing will experience the same advantage albeit tem-
porarily. Tall lines can also express more gas exchange and cooler ca-
nopies than shorter neighbors simply due to being exposed to more air
movement, while shorter lines, especially if boxed in by taller geno-
types experience a boundary layer of relatively still air which reduces
the opportunity for carbon fixation and evaporative cooling [210].
Confounding effects like these can also be at least partially mitigated
through experimental design as described in the last paragraph, and by
including checks that are within the same height and phenology range
as the genetic resources being tested. Using nearest neighbor(s) height
and/or phenology as covariates in the statistical analyses is also ne-
cessary to help compensate for these effects.

6. Integrating environmental data with trait expression at
different growth stages

The need to consider ‘confounding factors’ in field trials is mainly
because crop growth, development, and grain yield are results of the
cumulative influence of complex interactions between environmental
factors and crop traits, as well as crop management (Fig. 7). Accurate
environmental data collection is crucial to understand differences
among genotypes, management practices, and water and nutritional
effects on crop response. Interpretation of experimental data will be
limited without comprehensive environmental data, especially when
field trial results are conducted over diverse locations and cropping
systems.

7. Choice of measurement protocol: trade-offs between friendly
and sophisticated

Nowadays breeders can choose from a wide range of protocols for
field phenotyping. In general, the simpler the protocol, the cheaper and
faster it will be to implement. However, even for HTP approaches it is
becoming quite common to find solutions in the market that are user
friendly and fast to implement, but they can have an elevated cost as-
sociated with the sophisticated algorithms used for the data processing
or analysis. This can be the case, for example, with some image-based
protocols, where sophisticated statistical and image analysis algorithms
are used to extract useful information. The choice of the right approach
would then depend on the necessities of the user, and it usually implies
a trade-off between aspects such as spatial resolution, precision,
throughput and costs. A representation of the trade-off between the
main factors to consider when choosing a protocol is suggested in
Fig. 8. For instance, it is very hard to avoid a coarser spatial resolution
and lower precision if the objective is to measure a large number of
genotypes in a short time. But on the other hand, such an approach
would result in a reduction of costs estimated per plot or genotype.
Terrestrial vehicles and unmanned aerial platforms (UAVs) have
probably the best tradeoff between all these factors for breeding pur-
poses. Terrestrial vehicles can provide a very high spatial resolution and
data quality at a fairly high throughput to measure hundreds of plots in
a short time. Additionally, they have the advantage that many sensors
can be integrated on the same platform for simultaneous measure-
ments.

On the other hand, the use of UAVs clearly increases throughput in
comparison to terrestrial vehicles (from hundreds to thousands of plots)
while decreasing confounding effects related to short-term variations of
the environment such as changes in temperature or illumination con-
ditions as well as impact on the field plots due to contact and soil
compaction. Some drawback of UAVs, at the moment, are the loss of
resolution and limited payload compared to ground vehicles or sta-
tionary gantries. However, this might be soon overcome since the
technology is advancing very fast towards smaller sensors with higher
resolution. It is worth noting that both, terrestrial vehicles and UAVs,
are currently more recommended than manned aircrafts and satellite
imagery for breeding purposes, given the reduced frequency of data
collection and the coarser resolution of the latter, which is not optimal
for the small plots typically found in genotypic screening [202].

The development of new indices and platforms usually requires
specialists to process and interpret the data; for example, image analysis
is one such specialization. However, more and more user-friendly
software solutions are becoming available (even provided by the same
sensors manufacturers) for the estimation and analysis of well-estab-
lished remote sensing indices. This, together with an increasing choice
of versatile and accessible ground and aerial vehicles, has resulted in an
important number of breeding programs and research groups that are
actively using these platforms, sensors and traits in their pipelines
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8. Estimation of derivative traits for breeder friendly phenotyping
technologies

Crop growth models (CGMs) have been used in many aspects of crop
research and production, largely to support decision making at the
field, farm or policy levels [211], with wheat having been a major focus
for this work [212]. They have also contributed to plant breeding
through ‘environment-typing’ of trials (understanding how well they
represent the Target Population of Environments [TPE] for the breeding
program [213]), in order to estimate environment co-variables that can
be used in the statistical analysis of multi-location trials. A second
major use in breeding has been in the exploration of ideotypes com-
prising different combinations of adaptive traits, i.e. to estimate the
potential ‘value’ of traits or trait combinations using sets of locations
and historical weather data to represent the TPE [214,215].

A more explicit use of CGMs is sometimes termed ‘model-assisted
phenotyping’ [216], and capability in applying these approaches is now
becoming practical and can be illustrated for traits related to estimation
of canopy dynamics. Model-assisted phenotyping refers to the use of
models to compute ‘derived phenotypes’ that may be difficult to mea-
sure directly, and Luquet et al. [216] argued that it is possible to esti-
mate difficult-to-measure model parameters related to leaf growth by
running the model through datasets of changes in observed leaf area. In
the same vein [217], estimated glasshouse-derived genotype para-
meters can be obtained for leaf growth response to temperature, soil
water deficit and vapor pressure deficit. These parameters were run
through a cropping systems model (APSIM) to compute leaf area dy-
namics in field environments. By running simulations in multiple en-
vironments (i.e. historical weather records), this method allows bree-
ders to assign a ‘value’ to adaptive traits, i.e. in which environments and
conditions is a particular temperature or water deficit response likely to
be of greatest advantage.

This same approach can be applied to single field experiments in
order to estimate model parameters, but is challenged by the demands
of such models for detailed parameterization. A pragmatic response to
this parameterization challenge is that of Potgieter et al. [218] who

used UAVs to calibrate vegetation indices against observed LAI for a
small number of plots, and then extrapolated these relationships to
large numbers of breeding plots. This approach uses no physiological
modelling, but can derive information to calibrate models for esti-
mating complex traits that are difficult to measure (e.g. precision
traits), from handy and high-throughput measurements. The most re-
cent and explicit evolution of combining UAV and models to monitor
leaf area dynamics of maize is that of Blancon et al. [219]. This high-
throughput method relies on a combination of physiological modelling
and model inversion. A simple 5-parameter model of leaf appearance,
leaf size and leaf death was used. The leaf appearance rate was mea-
sured on all genotypes (ca. 400), while parameters for maximum leaf
size and a leaf death function were estimated after constructing a ca-
libration (transfer function) between UAV multi-spectral images and
LAI for a subset of genotypes. The advantage of this approach is that it
uses a direct calibration between UAV data and a model to account for
genotype x environment interaction effects on leaf growth dynamics.
The model parameters were shown to have a higher heritability than
LAI per se. A similar approach could be applied to models of canopy
growth in wheat, using a modified model. The maize canopy / UAV
methodology has also been developed further to design methods to
rapidly characterize leaf rolling traits after a calibration step of under-
canopy camera measurement [220].

Improvements in feature extraction from high-throughput field
phenotyping methods are providing the potential to further utilize
model-assisted phenotyping [221]. For example, if we can indirectly
estimate biomass at different times of growth, in addition to the char-
acterization of canopy dynamics, then it becomes possible to directly
estimate radiation use efficiency of different genotypes [28]. The ability
to accurately estimate plant [42] and ear population [88] using deep
learning methods allow models to be parameterized with other in-
formation such as tillering propensity (ears per plant), which can fur-
ther improve their performance in estimation of higher-heritability
phenotypes.

Fig. 9. A recommended flow diagram for a none to semi-automated phenotypic data streaming pipeline. The yellow text boxes suggest the ideal implementation in a
nearly full-automated data workflow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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9. Bringing it together: combining genomics and phenomics for
breeding

The rapid advancement of phenomics approaches and methodolo-
gies outline here is joining an already steady stream of genomic in-
formation in the breeding programs. The low-cost high-throughput se-
quencing that is readily available is providing breeders with genome-
wide information across breeding candidates that is being utilized in
genomic prediction models for predicting target traits (e.g. yield) across
the candidates and making selections based on genomic estimated
breeding values (GEBV) [222,223]. These genomic predictions can be
implemented at various stages in the breeding program to optimized
the benefit of the selection gain and time savings relative to the expense
of the genotyping [224]. Depending on the cost of phenotyping vs
genotyping, however, the optimal implementation of genomic selection
varies from program to program.

In this context the increasingly high-throughput (and low cost)
phenotyping methods compliment and augment genomic selection in
breeding programs. This has led to the concept of ‘phenomic selection’
and GS + HTP methodologies and prediction models for application in
the breeding program [225,226]. These new approaches that simulta-
neously leverage available genomic and phenomics data are being de-
monstrated in breeding programs and show great promise for in-
creasing prediction accuracy and/or increasing the throughput for
selection (via prediction) in early stages of the breeding program
[32,227–229].

Taken together, the value and implementation of both genomic
information and high-throughput phenotyping data in the breeding
pipeline and a tool for selection increases as the relative cost decreases
and throughput can increase. These new modeling approaches show
great promise to accelerate the genetic gain in breeding programs
through 1) increasing the (prediction) accuracy of early generation
selection, 2) increase the population sizes that can be effectively eval-
uated and 3) providing complementary information that will augment
the genomic predictions, providing both better genomic prediction
models and more accurate selection of advanced breeding lines. As with
any new breeding methodology, however, the breeder is the bench-
mark. A useful breeding tool that can be implemented in the program
will save on time and effort or effectively provide better selections (and
preferably both), under the constraints of a fixed overall budget for the
breeding program. Time and effort that is shifted from current breeding
methodologies (i.e. visual selection by the breeder) must be able to
offset this benchmark.

10. Improving data streaming

Regardless of the phenotyping approach that breeders choose (see
Box 1), a breeding program would more likely succeed if it can handle
data in an efficient way. As the size and cost of data increases with high-
throughput and precision phenotyping, this is a critical consideration in
the implementation of these approaches. The appropriate design and
implementation of a data streaming pipeline plays a crucial role in
assuring good data quality, straightforward analytics, good timing for
lines selection, data access by collaborators and safe mid to long term
data storage. Moreover, it can facilitate analysis of complex traits that
require the integration of different data sources, as well as physiolo-
gical, environmental, management and other metadata for interpreta-
tion [16]. Currently, most breeding public organizations function under
manual data collection and management operations, and continue to
rely on paper and pen and subsequently transcribe data [230,231].
These practices entail a considerable amount of human resources and
limit the efficiency in terms of time as well as errors.

Opportunities for improving data streaming pipelines will go hand
in hand with the automation of phenotyping protocols and will depend
on the data source (e.g. direct field assessments, imaging, ground base
instruments, etc.), the intensity of measurements, resources available

and capacity building. The latter point is crucial, since a key require-
ment in automation is to provide operators relative independence from
system administrators. In Fig. 9, we suggest a semi-automated data
streaming pipeline, identifying five main areas: 1) identification of
target traits, 2) planning the data collection campaign, 3) data collec-
tion, 4) dataset compilation and curation, 5) storage and sharing.

Handling data from image analyses has a different aspect when it
comes to data processing complexity; even single values per plot can be
the result of laborious protocols. Nowadays, there are platforms and
service providers that assist breeders in storing, managing and proces-
sing imaging data using cloud services, thus reducing cost for pheno-
typing compared to building up such a capacity in-house. In general,
the speed and capacity to process imaging data is given by the platform
and algorithm used. However, the organization and the access to the
data could also be considered as critical factors for assuring a flawless
imaging data streaming and easy association to geospatial and me-
teorological metadata.

11. Conclusions

A number of factors currently underscore the value of investing in
phenotyping for crop improvement. One relates to the advances that
have been made in recent decades in both phenotyping and the un-
derstanding of physiological processes in crops that could lead to sig-
nificant breakthroughs in their adaptation, with appropriate investment
in translational research. Another relates to opportunities for genetic
dissection of physiological processes resulting from massive invest-
ments in genomics that can lead to precise application of markers in
selection. Lastly, the imperative to breed crops to warmer and generally
harsher climates, demands a better understanding of adaptation, and
innovative breeding technologies. ‘Breeder friendliness’ is a key cri-
terion when considering scaling out, because highly complex or un-
proven phenotyping methods are likely to be counterproductive.
Nonetheless, the different contexts for phenotyping, including, parent
building, screening of progeny and other genetic resources, transla-
tional research to deliver breeding innovations, and the challenge re-
presented by the breeding target scenario, will ultimately determine the
cost-benefit of increased sophistication.
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