

Research to Deliver Wheat for the Future

Stomata Signaling Pathways for Increasing Yield Potential in Wheat

Project Leads

Name: Nora Foroud

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Tracy Lawson

Institution: University of Essex, GBR

Principal Investigators

Name: Brian Beres

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: André Laroche

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: John Laurie

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Christof Rampitsch

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Raju Soolanayakanahally

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Anne Smith

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Guus Bakkeren

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Yuefeng Ruan

Institution: Agriculture and Agri-Food Canada (AAFC), CAN

Name: Christine Raines

Institution: University of Essex, GBR

Name: Stuart Roy

Institution: University of Adelaide, AUS

Name: Penny Tricker

Institution: University of Adelaide, AUS

Abstract

Photosynthetic potential in cereals is one of the major limiting factors to increasing grain yield. Stomata are small pores found on the epidermal layer of aerial plant organs. They are key determinants of photosynthetic capacity as they regulate gaseous exchange and play a major role in balancing CO2 uptake to maintain photosynthesis whilst minimizing water loss to avoid dehydration. This project targets genes involved in pathways that control stomatal development, density and function to determine their impact on grain yield, biomass and water-use efficiency (WUE). Project outcomes will fine-tune our approaches for improved yield potential and stability.