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Wheat is an important cereal that is the staple food for 
more than 2.5 billion people globally1. Beyond its nutri-
tional and health benefits2, wheat contributes substan-

tially to food security by providing 20% of dietary calories and 
protein worldwide3. Wheat is also more widely cultivated than 
any other crop4 on an area of 220 million hectares with an annual 
production of 722.4 million metric tons5. However, the low annual 
rate (0.9%) of yield increase6, stagnating yields7 and the impacts of 
diseases8, climate change9, drought and heat stresses10 leading to a 
decreased yield remain key challenges to wheat production. Hence, 
to accelerate wheat breeding for higher yield potential and stress 
resilience, integration of genomic tools that can facilitate accurate 
selection and provide insights into the molecular basis of key traits 
is essential.

A genomics-based breeding strategy that has transformed the 
dairy industry is genomic selection, in which the genomic-estimated 
breeding values obtained from genome-wide molecular markers 
are used for the selection of superior animals11,12. The potential of 
genomic selection for wheat improvement is substantial, as it can 
facilitate more accurate selection, reduce the cycle time and pheno-
typing costs and subsequently accelerate genetic gains from selec-
tion, especially for complex traits of low heritability13,14. However, 
the practical implementation of genomic selection in applied wheat 
breeding programs is limited, with few comprehensive assessments 
of the genomic predictabilities of various traits that breeders col-
lectively select for. In addition, the cost of genotyping is a key con-
straint to large-scale implementation of genomic selection, and it is 

important to evaluate a cost-effective genotyping technology that 
small breeding programs and developing countries can also use to 
screen their lines.

An extensive understanding of the genetic architecture of key 
traits is critical for making accurate selection decisions and for com-
bining desired allelic combinations. In this regard, genome-wide 
association studies (GWAS) are a powerful strategy for dissecting 
the genetic basis of complex traits and identifying marker–trait asso-
ciations based on the linkage disequilibrium (LD) between a marker 
and the causal polymorphism15,16. Although a substantial number of 
wheat GWAS have been reported, several studies involving complex 
traits are underpowered owing to the small size of the association 
panels used, and there are few studies that focus on multiple traits. 
These factors highlight the necessity for a holistic multiple-traits 
GWAS in a large panel, that would help to gain insight into the co-
localization of loci for different traits. In addition, for complex traits 
like grain yield (GY) that are highly influenced by the environment, 
multi-environment GWAS17,18 are pivotal to understand the genetic 
basis of GY stability across environments.

The recent availability of the International Wheat Genome 
Sequencing Consortium’s reference sequence (RefSeq v.1.0)19 of 
bread wheat has created new opportunities for genomics-based 
breeding in wheat. The wealth of genomic information from the 
RefSeq v.1.0, coupled with extensive phenotyping information 
from the global wheat trials of the International Maize and Wheat 
Improvement Center (CIMMYT) could serve as a roadmap for 
future wheat improvement. CIMMYT plays a key role in developing  
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global wheat germplasm with improved yield potential,  
disease resistance, abiotic stress tolerance, end-use quality, broad 
adaptation to diverse environments and has a major share in wheat 
varieties released worldwide20. Hence, we aligned 78,606 genotyp-
ing-by-sequencing (GBS) markers21 for 44,624 lines that included 
five panels of wheat breeding lines from CIMMYT’s first-year yield 
trials (YTs) evaluated between 2014 and 2018 to the RefSeq v.1.0. 
The anchored markers were used in genomic prediction models for 
a subset of 3,485 lines phenotyped for 35 key traits, to understand 
the impact of genomic coverage and training populations on the 
genomic predictabilities of traits. We also performed GWAS to dis-
sect the genetic architecture of 50 traits, evaluated in South Asia, 
Africa and the Americas, and anchored the significant markers to 
a reference wheat genotype–phenotype map, aligned to the RefSeq 
v.1.0. Furthermore, we generated the genomic fingerprints of 44,624 
wheat lines for trait-associated markers and examined the marker 
allele frequency dynamics to characterize the role of selection in 
shaping patterns of allelic variation over time.

Results
Phenotyping data overview. The key trait analyzed in this study 
was GY, which was evaluated in the irrigated environments of 
Obregon (Mexico), Afghanistan, Bangladesh, Canada, Egypt, 
Bahawalpur (Pakistan), Islamabad (Pakistan), Ludhiana (India), 
Pusa (India), Morocco and Sudan, and the drought-stressed, early-
sown heat-stressed and late-sown heat-stressed environments of 
Obregon (Mexico). We also analyzed agronomic traits including 
days to heading (DTHD), days to maturity (DTMT), lodging and 
plant height. Disease resistance was analyzed as field resistance to 
stem rust race TTKSK/Ug99 and its derivatives, yellow rust evalu-
ated in Mexico and Ludhiana, Septoria tritici blotch (STB), spot 
blotch and wheat blast, and seedling resistance to stem rust races 
QTHJC, RCRSC, RKRQC, TKTTF, TPMKC, TRTTF and TTTTF 
and to leaf rust race MBJ/SP. The end-use quality traits analyzed 
included alveograph P/L (the ratio of the peak height to the length 
of the alveogram), alveograph W (work value), flour protein con-
tent, flour sedimentation, flour yield, grain color, grain hardness, 
grain protein content (GPC), loaf volume, mixing time, test weight 
and thousand-kernel weight (TKW) (Supplementary Data 1, 
Supplementary Table 1 and Supplementary Fig. 1a–d). The pheno-
typic correlations (Supplementary Fig. 2a) indicated high positive 
correlations between traits like DTHD and DTMT, alveograph W 
and mixing time, and flour protein content and GPC.

Genomic predictabilities of traits. We used four panels of wheat 
breeding lines comprising CIMMYT’s second-year elite yield trials 
(EYTs) evaluated during the crop seasons of 2014–2017 for genomic 
predictions. These lines were genotyped using GBS22,23 and from the 
set of 78,606 unfiltered markers (Supplementary Fig. 2b), subsets of 
markers with less than 70%, 50% and 10% missing data were used 
for genomic predictions. The genomic coverage associated with 
the subsets clearly showed a decreasing trend towards the proxi-
mal centromeric regions with stringent filtering for missing data 
(Fig. 1), and thereby served as ideal sets for evaluating the effect of 
genomic coverage on the predictabilities of traits (16,072 markers 
showed high coverage, 9,285 markers had moderate coverage and 
2,253 markers showed low coverage). Genomic prediction accura-
cies were obtained with the genomic best linear unbiased predic-
tion (GBLUP) approach using fivefold cross-validations within each 
EYT panel, in which folds comprising 153–196 lines were predicted 
from four other folds comprising 613–784 lines, and predictions 
across EYT panels, for which 766–980 lines in a panel were pre-
dicted from three other panels comprising 2,505–2,719 lines. We 
observed similar accuracies at the different levels of genomic cov-
erage, with the high-coverage marker subset providing an average 
increase of only 0.02 ± 0.02 (mean ± s.d.) in accuracy compared to 

the low-coverage subset, in both cross-validations and prediction 
across panels, across all traits (Fig. 2). To further understand the 
impact of marker densities, we filtered the marker subset with 10% 
missing data for pairwise correlations greater than 0.8, 0.5 and 0.3, 
and observed that the subsets after filtering for correlations greater 
than 0.5 (374–504 markers), resulted in an average decrease of only 
0.05 ± 0.03 in accuracy both within and across panels. However, 
when markers filtered for pairwise correlations less than 0.3 were 
used (77–160 markers), it led to an average decrease of 0.23 ± 0.05 
in prediction accuracy within panels and an average decrease of 
0.13 ± 0.06 in prediction accuracy across panels (Fig. 2).

The traits grain color, seedling and field resistance to stem rust, 
mixing time, alveograph W, flour sedimentation, loaf volume, flour 
protein content, GPC and TKW had the highest genomic predict-
abilities (0.60–0.85), whereas all of the other traits were moderately 
predictable in the cross-validations. In predictions across pan-
els, the traits with high predictabilities were seedling resistance to 
stem rust races QTHJC, TTTTF, TKTTF and TPMKC, grain color, 
mixing time, alveograph W, field resistance to stem rust and flour 
sedimentation with an average decrease of only 0.07 ± 0.05 in accu-
racy from the corresponding cross-validation accuracies. However, 
we observed low across-panel predictabilities of traits like GY and 
DTMT in all environments, DTHD in the early-sown heat-stressed 
environment of Mexico, DTHD in the irrigated environment of 
Mexico, STB, spot blotch, stem rust resistance to race RCRSC and 
race RKRQC and field resistance to yellow rust, with an average 
decrease of 0.20 ± 0.06 from the corresponding cross-validation 
accuracies. We also evaluated the Bayes B approach for predictions 
and observed that it resulted in similar accuracies as the GBLUP 
approach and the high genomic predictabilities of some traits were 
due to the large effects of the key trait-linked markers for those 
traits (Supplementary Data 2).

GWAS. A large EYT panel of 3,485 lines (for 24 traits) and several 
other panels (157–7,887 lines) were used to dissect the genetic archi-
tecture of 50 key trait–environment combinations using GWAS. 
Moderate population structure was present in the EYT panel as 
indicated by the first two principal components and the three ances-
tral sub-populations (Supplementary Fig. 3a,b). We identified hun-
dreds of significant marker–trait associations (Figs. 3 and 4) after 
Bonferroni correction for multiple testing and report the marker  
P values, additive effects and percentage variation explained by each 
marker (Supplementary Table 2). We also used the LD between 
markers to delineate about 138 quantitative trait loci (QTLs) and 
sub-QTLs associated with various traits (Supplementary Data 3 
and Supplementary Tables 3, 4 and 5). In addition, we performed 
a systematic review of literature to determine the relative positions  
of the QTLs identified in this study and observed that 44.4% of  
the QTLs coincided with previously reported QTLs or genes, 
and the remaining 55.6% QTLs were novel. The most significant  
trait-associated markers in each chromosome and previously 
reported genes or QTLs in proximity to the significant markers  
were then included in a reference genotype–phenotype map aligned 
to the RefSeq v.1.0 (Fig. 5).

Genomic regions associated with GY. We identified 31 QTLs that 
were significantly associated with GY in 14 locations, of which 
Qcim.2A.1, Qcim.3B.2, Qcim.6A.7 and Qcim.4D.1 were significant 
in five or more environments and could potentially confer GY sta-
bility across environments. Among these, Qcim.2A.1 was located in 
the 2NS translocation24, Qcim.3A.3 flanked the grain size and TKW-
linked Tags5-3A gene25 and a GY QTL26, Qcim.5B.1 coincided with 
two loci that are linked to a heat-susceptibility index27 and to the fer-
ritin gene, Tafer-5B, which enhances tolerance to heat stress28, and 
Qcim.7B.2 was located near the sucrose synthase gene Tasus1-7B, 
which is associated with TKW29.
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Genomic regions associated with agronomic traits. We identified 
15 QTLs that were significantly associated with the traits DTHD 
and DTMT, including seven common QTLs. Among these QTLs, 
Qcim.2B.2 was in the location of the Photoperiod-B1 (Ppd-B1) gene30 
and Qcim.3A.2 was 6.8 Mb away from Xbarc45, which is associated 
with ear emergence31. On the homeologous groups of chromosome 5,  
Qcim.5A.4, Qcim.5B.6 and Qcim.5D.2 flanked the cloned Vrn-A1, 
Vrn-B1 and Vrn-D1 genes that control vernalization in wheat32. 
Similarly, on the homeologous groups of chromosome 7, Qcim.7A.4 
was in the same location as the QTL linked to ear emergence31, 
Qcim.7B.1 was 1.25 Mb away from the vernalization gene Vrn-B333 
and Qcim.7D.2 was 9.8 Mb proximal to the Vrn-D3 gene33. Lodging 
and plant height were associated with ten and seven QTLs, respec-
tively, with two overlapping QTLs, Qcim.2A.1 and Qcim.3B.6, that 
were in the location of the 2NS translocation and the Tamyb10-B1 
gene34, respectively.

Genomic regions associated with disease resistance. We identified 
27 QTLs that were associated with disease resistance, of which 10 
were novel QTLs. Seedling resistance to leaf rust race MBJ/SP was 
conferred by Qcim.1D.2, which was 1.3 Mb from the Lr42 gene-
linked marker35 and Qcim.2B.1, which was 0.2 Mb proximal to the 
Lr16 gene-linked marker36. Seedling resistance to stem rust races 
QTHJC, RCRSC, RKRQC and TPMKC was conferred by 3–4 QTLs, 
with Qcim.2A.1 and Qcim.3A.1 associated with all of these stem rust 

races. We also observed the co-occurrence of other identified QTLs 
with previously reported genes: Qcim.2D.1 was 0.7 Mb away from 
the Sr6 gene37, which is effective against stem rust races TPMKC 
and QTHJC, Qcim.6B.10 flanked the Sr11 gene, which is effective 
against race TKTTF38, Qcim.4A.5 was in the same position as the 
Sr7a gene, which is effective against race TTTTF39,40, and a QTL 
effective against race RCRSC37 and Qcim.6A.2 was in the location 
of the Sr8a gene41, which is effective against stem rust race TRTTF.

Field resistance to stem rust was associated with seven QTLs, 
of which Qcim.3B.1 and Qcim.3B.2 flanked the Sr2 gene, which 
is known to confer durable rust resistance42 and Qcim.7D.1 was 
0.4 Mb distal to the cloned broad-spectrum resistance gene, Lr34-
Yr18-Sr5743. The QTL Qcim.3B.4 is likely to be in the location of the 
Sr12 gene44 or another gene important for field resistance to stem 
rust that co-localizes with Sr1245, both of which are in the inter-
val of the significant markers. The QTLs on chromosome 6AS with 
the highest effect on field resistance to stem rust were novel sources 
of resistance, and were therefore explored further using a fine-
mapping approach. The biparental population for fine-mapping 
was developed using Kenya Fahari/2*Kachu as the resistant parent 
(which was the most likely donor of the 6AS QTL) and the most 
significant marker in the fine-mapping analysis corresponded to 
the location of Qcim.6A.3. We also observed that the 6AS telomeric 
region exhibited high recombination, and the peri-centromeric 
region in several progenies was inherited from the susceptible  
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parent, Apav (Supplementary Fig. 4a–c). Field resistance to yellow 
rust in Mexico was associated with the Qcim.2A.1 or the 2NS trans-
location and Qcim.3A.1, which were also associated with wheat 
blast. However, for yellow rust in Ludhiana (India), resistance was 
associated with two QTLs on chromosome 2B and the presence of 
the Yr31 flanking marker46 near the most significant marker con-
firms that one or both of the QTLs indicate Yr31 resistance, which is 
present in several CIMMYT wheat cultivars47,48. Resistance to STB 
and spot blotch was associated with the centromeric region of chro-
mosome 2A, and spot blotch was also associated with Qcim.3B.3, 
which is probably the Sb3 gene that was 1 Mb distal to this QTL49.

Genomic regions associated with end-use quality. We identified 60 
QTLs associated with end-use quality, of which 36 were not pre-
viously reported. The trait grain color had the simplest genetic 
architecture and was associated with Qcim.3A.4, which was 2.9 Mb 
away from the red grain color MYB-type transcription factor 
Tamyb10-A134, and Qcim.3B.6, which flanked the Tamyb10-B1 
gene34. Grain hardness was associated with Qcim.5D.1, which was 

8.6 Mb distal to the markers linked to the two grain-hardness-deter-
mining puroindoline genes, located in the Hardness locus50. The 
traits alveograph W and mixing time were associated with several 
common loci, some of which were also associated with loaf volume. 
Among them, Qcim.1A.1 was in the location of the gamma-gliadin, 
omega-gliadin and low-molecular-weight gluten genes encoded 
by the tightly linked Gli-A1 and Glu-A3 loci, which are associated 
with dough strength and mixing time51–53; Qcim.1B.1–Qcim.1B.3 
were in the location of the gamma-gliadin (Gli-B1) and low-molec-
ular-weight gluten genes (Glu-B3) that affect dough strength and 
bread-making quality54; Qcim.1B.6 was in the location of the high-
molecular-weight Glu-B1 gene associated with dough mixograph 
parameters55; Qcim.1D.1 was 0.005 Mb away from the low-molec-
ular-weight gluten gene (Glu-A3) linked to gluten strength‐related 
parameters56; and Qcim.1D.3 coincided with the high-molecular-
weight Glu-D1 gene that is known to affect dough strength and 
bread-making quality57.

The traits flour protein content and GPC were associated with eight 
common loci, of which Qcim.6A.5 and Qcim.6B.5 were associated  
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Fig. 2 | Genomic prediction accuracies for DTHD, DTMT and GY in different environments, disease resistance and end-use quality traits, within and 
across panels at different marker densities using the genomic-best linear unbiased prediction approach. a, The within-panel accuracies are the average 
accuracies obtained from fivefold cross-validations, where folds comprising 153–196 lines were predicted from four other folds comprising 613–784 lines, 
within each EYT evaluated during the 2013–2014, 2014–2015, 2015–2016 and 2016–2017 seasons using markers with less than 70% missing data  
(12,798–14,260 markers in the four individual seasons), markers with less than 50% missing data (7,737–8,586 markers in the four individual seasons), 
markers with less than 10% missing data (1,290–1,889 markers in the four individual seasons), markers with less than 10% missing data and pairwise 
correlations less than 0.8 (781–958 markers in the four individual seasons), markers with less than 10% missing data and pairwise correlations  
less than 0.5 (374–447 markers in the four individual seasons) and markers with less than 10% missing data and pairwise correlations less than 0.3  
(77–97 markers in the four individual seasons). b, The across-panel accuracies are the average prediction accuracies obtained from predicting each EYT 
panel of 766–980 lines from three other panels of 2,505–2,719 lines, except for seedling disease resistance, using markers with less than 70% missing 
data (16,072 markers), markers with less than 50% missing data (9,285 markers), markers with less than 10% missing data (2,253 markers), markers with 
less than10% missing data and pairwise correlations less than 0.8 (1,091 markers), markers with less than 10% missing data and pairwise correlations less 
than 0.5 (504 markers) and markers with less than 10% missing data and pairwise correlations less than 0.3 (160 markers). The upper and lower hinges 
of the boxes in the box plot indicate the first (25th percentile) and third (75th percentile) quartiles, the center line indicates the median (50th percentile) 
corresponding to the prediction accuracies across evaluation panels and the upper and lower whiskers extend from the hinge to the largest or smallest 
values that are less than or equal to the hinge and 1.5× the interquartile range, respectively. TKW, thousand kernel weight; GPC, grain protein content; 
GY, grain yield; DRT, drought stressed; EHT, early-sown heat stressed; IRR, irrigated; LHT, late-sown heat stressed; DTHD, days to heading; DTMT, days to 
maturity; STB, Septoria tritici blotch; LUDH, Ludhiana; MEX, Mexico. Except for the smallest marker subset with 10% missing data and pairwise correlations 
less than 0.3, which led to an average decrease of 0.23 ± 0.05 in prediction accuracy within panels and an average decrease of 0.13 ± 0.06 in prediction 
accuracy across panels, all other marker subsets resulted in similar accuracies or had only a marginal difference in accuracies in both cross-validations and 
prediction across panels, across all traits.
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Fig. 3 | Marker–trait associations for GY and agronomic traits. Manhattan plots showing marker–trait associations for GY and agronomic traits from a 
genome-wide association mapping study. A Bonferroni α level of 0.20 was used to correct for multiple testing and identify significant markers. The 2AS 
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with the alleles at the Gpc-A1 and Gpc-B1 loci58,59, located in those 
intervals. Both alveograph P/L and flour yield were associated with 
Qcim.1B.7, while flour sedimentation and loaf volume were asso-
ciated with Qcim.1B.1, Qcim.1B.3, Qcim.1B.6 and Qcim.2D.5. Test 
weight was associated with five QTLs, one of which coincided with 
a previously reported QTL60. Finally, TKW was associated with ten 
QTLs including Qcim.2A.2, which was 1 Mb away from the cell 
wall invertase gene, Tacwi-A1, which is known to increase kernel 
weight61; Qcim.3A.5 was localized to same location as the TKW 
gene TaTGW6-A162; and Qcim.6A.7.1, Qcim.6B.4 and Qcim.6D.2 
were close to the grain weight-associated TaGW2 genes63.

Genomic regions associated with different classes of traits. Several 
QTLs that were associated with more than one class of trait were 
identified. For example, the Qcim.2A.1 or the 2NS translocation 
was significantly associated with GY in ten environments, seed-
ling resistance to four stem rust races, yellow rust in Mexico, wheat 
blast, lodging, DTHD, DTMT and plant height. On the telomeric 
end of chromosome 3BS, two linked QTLs were associated with GY 
in several environments, stem rust and spot blotch. Another QTL, 
Qcim.3B.6, was associated with grain color (Tamyb10-B1), GY eval-
uated in the early-sown heat-stressed environment, DTHD in the 
drought-stressed environment, plant height and lodging. We also 
observed that Qcim.6A.5 and Qcim.6B.5 were associated with pro-
tein content, TKW and GY, and Qcim.6B.7 (TKW) had sub-QTLs 
associated with DTMT.

Genomic fingerprinting and allele frequency dynamics. A large 
resource (Supplementary Table 6a–d) containing genomic finger-
prints of 44,624 wheat lines for 195 trait-associated markers com-
prising 7.6 million data points was generated (Fig. 6, Supplementary 
Fig. 5a–c). The alleles with increasing effects on GY, agronomic 
and end-use quality traits, and decreasing effects on lodging and 
diseases (referred to as favorable alleles), along with their changes 

in frequencies due to selection from 2014 to 2018 were obtained 
(Supplementary Fig. 6a–d). For GY, 45 of the 65 fingerprinted 
markers had favorable alleles in more than 65% of the lines, with the 
highest increase over the years observed for marker S2D_14747094 
and Qcim.2A.1 (28–38% increase). A benchmark high-yielding 
CIMMYT-derived Mexican variety, BORLAUG100 F2014 had 
favorable alleles for GY in 35 of the 39 non-missing fingerprinted 
markers, which substantiates its high yield potential. We also ana-
lyzed the frequency dynamics of the favorable alleles for GY due to 
selection for 15 years (2003–2017) using 47 GY-associated markers 
in the globally distributed elite spring wheat yield trials (ESWYTs, 
Fig. 7). Considering the last three ESWYTs, we identified several 
markers at Qcim.1B.4, Qcim.3B.8, Qcim.4A.1 and Qcim.4D.1 that 
were fixed or near fixation for the favorable alleles for GY, with fre-
quencies greater than 96%. The highest change in the frequency of 
favorable alleles from 2003 to 2015–2017 was observed for markers 
in Qcim.2A.1 (24- to 28-fold increase), Qcim.7B.2.1 and Qcim.1B.5. 
To test whether the change in the variance of the favorable alleles 
is what would be expected solely due to random genetic drift, we 
compared the expected variance of the favorable alleles over time 
with the observed allelic variance for all the markers. A higher vari-
ance of favorable alleles for the markers at Qcim.5B.7, Qcim.2A.1, 
Qcim.4A.1, Qcim.4A.2, Qcim.7B.2.1 and Qcim.1B.4 compared to the 
expected variance (Supplementary Table 7) indicated that artificial 
selection might have been a stronger force than genetic drift in driv-
ing the frequencies of favorable alleles higher.

The favorable alleles for lodging resistance at the most significant 
marker (S6A_187295466) had a very low frequency (0.13), whereas 
the allele that increased plant height at the most significant marker 
was present at a high frequency (0.74). Fingerprinting for DTHD and 
DTMT revealed that the frequencies of favorable alleles were high 
(greater than 76%) for markers S4D_439658613, S6A_76625816, 
S5A_595158840 and S2B_57683037. Disease resistance finger-
printing revealed that favorable alleles at markers S2D_14747094, 
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S2B_734266688, S3A_8014154, S3B_2280114 (spot blotch), 
S2A_197466859 and QTLs Qcim.2A.1, Qcim.3B.4, Qcim.6A.2 and 
Qcim.6B.3 had a very high frequency (more than 85%) in several 

panels, whereas markers S1D_7734848, S3B_2280114 (stem rust) 
and S6A_7224185 had a very low frequency of favorable alleles (less 
than 10%). Fingerprinting for end-use quality traits showed that 
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Fig. 6 | Genomic fingerprinting analysis for markers that are significantly associated with GY across different environments. Genomic fingerprinting 
analysis of 44,624 wheat lines from the International Wheat and Maize Improvement Center’s bread wheat germplasm for markers that were significantly 
associated with GY in different environments, including the irrigated environments of Bahawalpur, Pakistan (BAH), Dehdadi Farms, Afghanistan (AFG), 
Jamalpur, Bangladesh (BANG), Swift Current, Canada (CAN), Ety El Barud, Egypt (EGY), Obregon, Mexico (IRR MEX), Islamabad, Pakistan (ISL), Ludhiana, 
India (LUDH), Marchouch, Morocco (MOR), Pusa, India (PUSA), Wad Medani, Sudan (SUD), and in the drought-stressed (DRT MEX), early-sown heat-
stressed (EHT MEX) and late-sown heat-stressed (LHT MEX) environments of Obregon, Mexico. A high frequency of GY-favorable alleles was observed, 
and more than 65% of the lines had the favorable alleles in 45 of the 65 fingerprinted markers.
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the overall frequencies of favorable alleles were greater than 85% 
for markers S1D_413406182, S5B_479840000, S1D_408708457, 
S2B_155155706 and S6A_77083118. The markers with very 
low frequencies of favorable alleles, including S3A_711088900, 
S3B_757480826, S5D_12223363 and S5A_589333276, were asso-
ciated with TKW, grain color and grain hardness. Over the years, 
an increasing trend (20–24%) in the favorable allele frequencies 
was observed for markers S2D_616506238, S2D_617097510 and 
S1B_653086336.

Discussion
We designed a comprehensive genomic prediction study that 
incorporates several economically important traits, thus providing 
a concrete foundation for future bread wheat improvement using 
genomic selection. Our results provide evidence that the across-
population accuracies using different training populations will be 
lower than the within-population accuracies for low-heritable traits, 
like GY, that are subject to high environmental interactions64–66 and 
for some foliar diseases and phenological traits. We also provide 
evidence that genomic selection will be a potential selection tool 
for several end-use quality-related traits, field resistance to stem 
rust and seedling disease resistance with a simple genetic archi-
tecture. As some of these traits involve laborious, time-consuming 
and expensive phenotyping, it is evident from the predictabilities 
reported in this study that genomic selection could be valuable for 
these traits, with respect to scaling-up phenotyping to large unphe-
notyped populations, making precise selections in early genera-
tions and reducing the generation interval through rapid cycling, in 
which cases genomic selection has added value to livestock breed-
ing67–70. In addition, genomic selection for these traits has the attrac-
tive potential to render value over the phenotyping investment by 
minimizing replication costs for breeding programs and selecting 
superior varieties for target developing countries where expensive 
phenotyping infrastructure and resources may not be available.

An interesting observation in this study was that different levels 
of genomic coverage had minimal impact on the genomic predict-
abilities of traits, implying that once the genomic resolution has been 
reached in a high LD crop like wheat, marker number is no longer 
a critical limiting factor for prediction accuracies, as also observed 
in low-density marker panels in other species71–73. Although high 
genotyping costs impede the application of genomic selection on 
a global scale, we have successfully demonstrated the robustness  
of a relatively inexpensive genotyping technology (US$10 per  
sample) like GBS in achieving sufficient predictive accuracies for 
most traits that can be effectively used by breeding programs in 
developing countries.

This study reports the results of GWAS for an array of globally 
important traits that provide valuable insights into the genetic archi-
tecture and co-localization of loci for various traits, some of which 
are highlighted. An intriguing co-localization identified in this 
study was the association of the 2NS translocation from Aegilops 
ventricosa with GY in 10 different environments, disease resistance, 
lodging, phenology and plant height. Although this region has pre-
viously been reported to carry resistance to all three rusts74 and 
wheat blast75, we furthermore report its potential association with 
GY and stability, demonstrating its potential value for wheat breed-
ing. An interesting region on the telomeric end of chromosome 3BS, 
which was favorably associated with GY and spot blotch, but unfa-
vorably associated with stem rust, indicates that the two associated 
genes could be linked in repulsion or the same gene might have an 
opposite pleiotropic effect on these traits. A repulsion phase link-
age between the Sr2 gene and Fhb1 gene in this region has been 
reported previously and the Fhb1 gene-linked marker76 was distal 
to this important region. However, it is unclear whether the stem 
rust-associated region is linked to the Sr2 gene, because this gene is 
known to be widely deployed in the CIMMYT germplasm, whereas 

the allele frequencies at the two markers indicated that only 8–14% 
of the yield trial lines had the favorable allele for stem rust. A QTL 
on chromosome 3BL in the location of the red grain color gene 
Tamyb10-B1 had alleles that led to red grain color, and increased 
plant height also associated with decreased DTHD in the drought-
stressed environment and GY in the early-sown heat-stressed envi-
ronment. This could be due to another locus in this interval or 
the pleiotropic effect of the MYB-transcription factor that is well-
known to be associated with tolerance to abiotic stresses77 and to 
increase plant height78. Two other QTLs associated with the alleles 
at the Gpc-A1 and Gpc-B1 loci had opposite effects on TKW and 
GY, respectively, consistent with negative associations between 
these traits79. The TKW-increasing allele located in the TaGW2-6B 
gene was also associated with early heading and maturity, substan-
tiating previous reports80.

The genotype–phenotype map anchoring significant markers to 
the RefSeq highlights the application of the RefSeq as a platform for 
comparing and validating GWAS results. It will also serve as a com-
munity resource providing opportunities for accelerating genomics-
assisted wheat breeding through the targeted selection of desired 
regions. The genomic fingerprints of a large panel of lines compris-
ing several key varieties cultivated worldwide provide an important 
leap in the understanding of the genetic basis of traits in superior 
varieties. For example, we provide evidence for the genetic basis 
of high yield in the variety BORLAUG100 F2014 and for the high 
resistance to stem rust in an old Kenyan variety (Kenya Fahari). The 
progressive trend and near fixation of favorable alleles for GY over 
15 years not only show the effective impact of selection, but also 
emphasize the need for a continued effort of breeders to introduce 
novel sources of favorable alleles and the importance of integrat-
ing genomic tools in achieving accelerated enrichment of favor-
able alleles. Overall, the extensive datasets and results presented in  
this study provide a framework for breeders to design strategies to 
efficiently tackle alarming stresses like stem rust81, wheat blast82, 
STB83 and climate change84,85, while ensuring food-sustainability 
and security.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0496-6.
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Methods
Populations. The populations used include six panels of lines from CIMMYT’s 
global bread wheat breeding program. Panel 1 comprises 3,485 lines from the EYTs 
or the second-year yield trials. The 3,485 lines include 766 lines from EYT 2013–
2014, 775 lines from EYT 2014–2015, 964 lines from EYT 2015–2016 and 980 lines 
from EYT 2016–2017. Panel 2 comprises 2,142 lines from the South Asia bread 
wheat yield trials (SABWYT, a subset of the EYTs) or the third-year evaluations  
of GY in India and Bangladesh. This panel includes 536 lines from SABWYT  
2014–2015, 531 lines from SABWYT 2015–2016, 535 lines from SABWYT  
2015–2016 and 540 lines from SABWYT 2016–2017. Panel 3 comprises 1,956 
lines from the international bread wheat screening nursery (IBWSN). Panel 4 
comprises 7,887 lines from the first-year yield trials evaluated in 2014–2015. Panel 
5 comprises 863 lines that were candidates for the stem rust resistance screening 
nurseries (SRRSNs) and subsets of the EYTs. This panel includes 219 lines 
evaluated in 2014, 179 lines evaluated in 2015, 234 lines evaluated in 2016 and 231 
lines evaluated in 2017. Panel 6 comprises 676 lines from the elite spring wheat 
yield trials (ESWYTs) evaluated from 2003 to 2017.

The cohorts of breeding populations were developed using the selected-bulk 
breeding scheme, for which the selected plants in early generations were bulked 
until the head- or plant-row stage64. The selections from this pre-yield testing 
or head-row stage comprise the lines in the first-year yield trials. Genomic 
fingerprinting was carried out for the 44,624 lines that included 919 lines from 
EYT 2013–2014, 6,927 lines from the 2013–2014 yield trial, 8,762 lines from 
2014–2015 yield trial, 9,041 lines from 2015–2016 yield trial, 9,034 lines from 
2016–2017 yield trial, 8,088 lines from 2017–2018 yield trial, 1,384 lines from the 
IBWSN and 469 parents from CIMMYT’s crossing blocks 2009–2018. A biparental 
mapping population (Apav/#1//Kenya Fahari/2*Kachu) of 200 individuals with 
the resistant parent Kenya Fahari/2*Kachu and the susceptible parent Apav/#1 was 
developed for the dissection of the genetic basis of stem rust resistance in Kenya 
Fahari/2*Kachu.

Phenotyping. GY and agronomic traits. GY for all of the 3,485 lines in panel 1 was 
evaluated in the Norman E. Borlaug Research station, Ciudad Obregon, Sonora, 
Mexico (27°29′N, 109°56′W), during four seasons (2013–2014 to 2016–2017). 
The lines in each season were sown in 39 trials, with each trial comprising 28 lines 
and two high-yielding check varieties (Kachu and BORLAUG100 F2014) in six 
blocks. In addition, all the entries were replicated thrice in four environments, 
which included the following conditions: (1) Optimally irrigated; the lines were 
sown in raised beds, during the optimum planting time (mid-November) in an 
optimally irrigated environment that received 500 mm of water in five irrigations. 
(2) Drought stressed; the lines were sown in the flat planting system, during the 
optimum planting time and grown with about 180 mm of water supplemented 
through drip irrigation. (3) Early-sown heat stressed; the lines were sown in 
raised beds, about 30 days before the optimum planting time and received 
optimal irrigation. (4) Late-sown heat stressed; the lines were sown on raised 
beds about 90 days after the optimal planting time, to naturally expose them to 
high-temperature stress during that time, and they received optimal irrigation. 
In addition, phenological traits like DTHD (number of days from germination to 
50% of spike emergence) and DTMT (number of days from germination to 50% 
physiological maturity) in all the environments were recorded for the lines in 
panel 1. As GY in the different environments had moderate to high correlations 
with DTHD, the lines at the tails of the DTHD distributions were removed. Plant 
height (the height of the plant in cm) and lodging (ordinal scale from 0 to 5) 
were measured for the 7,887 lines in 2014–2015 yield trial with two replicates. 
The 2,142 lines from the SABWYTs were evaluated in the irrigated environments 
of the Borlaug Institute for South Asia in Ludhiana (30°54′ N, 75°51′ E) and 
Pusa (25° 59′ N, 85° 41′ E), India, in addition to Jamalpur (24° 55′ N, 89° 57′ E), 
Bangladesh with two replicates and the same field design as in Mexico. Some or 
all the 676 ESWYT lines were also evaluated for GY in the irrigated environments 
of Bahawalpur, Pakistan (28° 49′ N and 71° 39′ E), Dehdadi Farms, Afghanistan 
(36° 39′ N, 66° 59′ E), Swift Current, Canada (50° 17′ N, 107° 48′ W), Ety El Barud, 
Egypt (31° 7′ N, 30° 48′ E), Islamabad, Pakistan (33° 45′ N, 73° 6′ E), Marchouch, 
Morocco (33.55° 3′ N, 6.69° 38′ W) and Wad Medani, Sudan (14° 24′ N, 33° 29′E), 
with both CIMMYT and local check varieties during 2003–2017.

Disease response evaluations. Seedling response to leaf rust. Seedling response 
to leaf rust caused by Puccinia triticina Eriks. race MBJ/SP86 was evaluated 
in CIMMYT’s greenhouses at El Batan, Mexico for the 1,956 lines in panel 3. 
Inoculum preparation and inoculation were carried out as described previously87 
and the seedling responses were evaluated 10 days after inoculation,  
using a 0–4 scale88.

Seedling response to stem rust. Seedling response to stem rust caused by Puccinia 
graminis Pers. f. sp. tritici was evaluated at the USDA-ARS Cereal Disease 
Laboratory. The seven P. graminis f. sp. tritici races that were evaluated in the 
SRRSN include QTHJC (isolate 75ND717C), RCRSC (isolate 77ND82A-1), 
RKRQC (isolate 99KS76A-1), TKTTF (isolate 13ETH18-1), TPMKC (isolate 
74MN1409), TRTTF (isolate 06YEM34-1) and TTTTF (isolate 01MN84A-1)89. 
Among these, race TPMKC was used for evaluation of all four SRRSN candidates, 

races QTHJC and RCRSC in 2014 and 2015, race RKQQC in 2014, 2015 and 
2016, race TRTTF in 2014, race TKTTF in 2015, 2016 and 2017, and race TTTTF 
in 2016 and 2017. Inoculum preparation and inoculation were carried out as 
described previously90,91 and the infection types were scored on a 0–4 scale92. The 
leaf and stem rust seedling scores were linearized to a 0–9 scale for the analyses93.

Field response to stem rust and yellow rust. The EYT lines were evaluated for 
field response to stem rust at the Kenya Agricultural and Livestock Research 
Organization, Njoro, Kenya (0° 19′ N, 35° 56′ E) during the 2013–2017 main and 
off-seasons with race TTKST in 2013–2016 and with a mixture of TTKST and 
TTKTT in 2017, both belonging to the Ug99 lineage94. Similarly, the biparental 
population was evaluated for field response to stem rust during the 2016 off-
season for the races mentioned above. The EYTs were also evaluated for yellow 
rust (caused by Puccinia striiformis West.) response to the Mexican isolates 
Mex96.11, Mex08.13 and Mex14.191 at CIMMYT’s research station, Toluca, 
Mexico (19° 17′ N, 99° 11′ W) as described previously93 and to the predominant 
races collected from popular cultivars PBW343 (during 2013–2016) and HD2967 
(during 2017) in Ludhiana, India. Rust response was scored twice or thrice 
between the early- and late-dough stages, at weekly to 10-day intervals after the 
severity of the susceptible checks reached 80%. The percentage of infected tissue 
(0–100%) was assessed using the modified Cobb scale95.

Field response to STB. Field response of the EYT lines to STB, which is caused by 
Zymoseptoria tritici Desm., was evaluated at Toluca, Mexico during the 2013–2017 
crop seasons as described previously96, using the double-digit scale (00–99) for 
rating foliar diseases97,98. We performed three to four evaluations, and calculated 
the disease severity percentages using the double-digit scores, from which the area 
under the disease progression curve (AUDPC)99 and the relative AUDPC were 
calculated.

Field response to spot blotch. Field response of the EYT lines to spot blotch caused 
by Bipolaris sorokiniana Sacc. was evaluated at CIMMYT’s research station, Agua 
Fria, Mexico (19° 59′ N, 97° 50′ W), during the 2013–2017 crop seasons. The 
planting design was similar to that for STB, with the lines sown during November 
and harvested in March. A mixture of virulent races collected from leaf samples 
that were naturally infected in Agua Fria was used for inoculation100 and the 
relative AUDPC was calculated, similar to STB.

Field response to wheat blast. The field response of 271 lines from the IBWSN to 
wheat blast caused by Magnaporthe oryzae Catt. was evaluated in the Department 
of Santa Cruz, Quirusillas, Bolivia in two replications. The lines were sown in 
the fourth week of December 2017 in 1-m double rows with 20-cm spacing 
between the rows. Local varieties Urubo and Atlax were used as resistant and 
susceptible checks, respectively. A locally collected M. oryzae isolate was used for 
field inoculation at anthesis, as well as 2 days after anthesis at a concentration of 
50,000 spores ml−1 using a hand-held sprayer. Disease evaluation was performed 
at 21 days after the first inoculation on 10 spikes that were tagged at anthesis. The 
total and the infected number of spikelets were recorded for each of the 10 spikes, 
and then the wheat blast index was calculated using the formula: wheat blast 
index = incidence × severity, where incidence indicates the proportion of spikes 
with wheat blast infection and severity indicates the average percentage of  
infected spikelets.

End-use quality. The end-use quality traits were evaluated for all of the lines in the 
EYTs, with slightly modified methods from the American Association of Cereal 
Chemists (AACC)101 standards. A mixograph (National Manufacturing Company) 
according to AACC method 54–40A101 and the Chopin alveograph (Tripette 
& Renaud), AACC method 54–30A, were used to analyze dough rheological 
properties. The mixograph was then used to obtain the optimal mixing time (min), 
whereas the alveograph was used to measure the dough strength, or the work value 
under the curve (alveograph W) and the tenacity versus extensibility, which is the 
ratio of the height to the length of the curve (alveograph P/L, mm mm–1). The flour 
SDS sedimentation volume (ml) was determined using 1 g of flour102, and bread 
loaf volume (cm3) was assessed by the rape seed displacement method according 
to the AACC method 10–05.01101, from pup loaves that were baked as pan bread 
using the slightly modified AACC method 10–09101. The optimal water absorption 
for the mixograph, alveograph and bread-making tests were calculated based on 
solvent retention capacity103.

We also measured GPC (on a 12.5% moisture basis), grain hardness (particle 
size index) and moisture content using near-infrared spectroscopy (NIR 
system 6500, Foss) in accordance to the methods AACC 39–10, 39–70A and 
39–00, respectively101. The grain samples were then milled using the Brabender 
Quadrumat Jr. (C. W. Brabender OHG), after being optimally tempered (13 to 
16.5%), according to the hardness. Both flour protein and moisture content were 
then determined with the Antaris II FT-NIR analyzer (Thermo). Calibration for 
particle size index (AACC method 55–30), moisture (AACC method 44–15A) 
and protein (AACC Method 46–11A) were performed in both near-infrared 
spectroscopy instruments. Test weight (kg hl−1) was obtained by weighing a 37.81-ml  
sample, and TKW (g) was obtained by weighing the kernels that were counted 
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using the digital image system SeedCount SC5000 (Next Instruments). Grain color 
was scored as a binary trait, where 0 represented white and 1 represented red and 
flour yield was obtained as the percentage recovered from milling.

Statistical analysis of the phenotypic data. Removal of outliers. The Huber’s robust 
fit outliers method104 was used to remove outliers in the phenotypic data using the 
JMP statistical software (https://www.jmp.com).

Best linear unbiased estimates. The best linear unbiased estimates (BLUEs) for GY 
within each environment were calculated using the ASREML statistical package105 
with the following mixed linear model:

yijkl ¼ μþ gi þ tj þ rkðjÞ þ bl jkð Þ þ εijkl ð1Þ

where yijkl is the GY of the ith genotype in the jth trial, kth replicate and lth 
block, μ is the mean, gi is the fixed effect of the genotype i, tj is the random effect 
of the trial tj  NIIDð0; σ2t Þ

I
 where NIID stands for normal, independent and 

identically distributed, rk(j) is the random effect of the replicate within the trial, 
rk jð Þ  NIID 0; σ2r

� �
; bl jkð Þ

I
 is the random effect of the incomplete block within the 

trial and the replicate bl jkð Þ  NIIDð0; σ2bÞ
I

 and εijkl
I

 is the residual εijkl  NIIDð0; σ2εÞ
I

.  
The random effect of the year was included in equation (1) for GY BLUEs across 
years in the EYT and ESWYT panels and the BLUEs for all other traits.

Phenotypic correlations. The phenotypic correlations among all the trait–
environment combinations evaluated in the 3,485 EYT lines were obtained using 
the Pearson’s product–moment estimator.

Genotyping. The GBS approach22,106 was used to obtain genome-wide markers 
for all of the lines. The Illumina platform was used for genotyping at Kansas 
State University, and marker polymorphisms were called using TASSEL v.5 (trait 
analysis by association evolution and linkage) GBS v.2 pipeline106. The minor 
allele frequency for single-nucleotide polymorphism (SNP) discovery was set to 
0.01 and about 6,075,743 unique tags were anchored to the International Wheat 
Genome Sequencing Consortium’s first version of the reference sequence (RefSeq 
v.1.0) assembly of the bread wheat variety Chinese Spring19, with Bowtie2107. This 
resulted in an overall alignment rate of 63.98%, with 28.92% unique alignments 
and 35.06% multiple alignments. The SNPs were initially filtered for an inbred 
coefficient of >80%, P < 0.001 using Fisher’s exact test and a χ2 value less than the 
critical value of 9.2 with 2 d.f. and α = 0.01. The 78,606 SNPs that passed at least 
one of these filters were further filtered for a minor allele frequency greater than 
5% and heterozygosity less than 5%. For the four evaluation nurseries, marker 
subsets with less than 70% missing data (12,798–14,260 markers), 50% missing 
data (7,737–8,586 markers), 10% missing data (1,290–1,889 markers), 10% missing 
data and pairwise correlations less than 0.8 (781–958 markers), 10% missing data 
and pairwise correlations less than 0.5 (374–447 markers) and 10% missing data 
and pairwise correlations less than 0.3 (77–97 markers) were created and used 
for within-panel genomic predictions. For across-panel predictions, the different 
marker subsets used include those with less than 70% missing data (16,072 
markers), 50% missing data (9,285 markers), 10% missing data (2,253 markers), 
10% missing data and pairwise correlations less than 0.8 (1,091 markers), 10% 
missing data and pairwise correlations less than 0.5 (504 markers) and 10% 
missing data and pairwise correlations less than 0.3 (160 markers). For GWAS, 
a subset of markers with missing data less than 40% was used, resulting in 6,355 
markers for the EYT panel and 9,171–9,704 markers for the seven ESWYT panels. 
Similarly, for the biparental population, markers with missing data greater than 
30%, minor allele frequency lesser than 5% and heterozygosity greater than 10% 
were removed resulting in 1,501 markers. Missing data were imputed with the k-
nearest neighbor genotype imputation method based on LD using LinkImpute108 
in TASSEL109 v.5.

Genomic prediction. We used the GBLUP, which is a robust and widely used 
model for genomic predictions96,110,111. The GBLUP model can be represented as:

yi ¼ μþ gi þ εi ð2Þ

where yi is the response phenotype or the adjusted best linear unbiased predictions 
for individual i, μ is the general mean, the vector g = (g1, …, gi)′ contains the 
genomic values of the lines that follows a multivariate normal density such that 
g ¼ gi

� �
 N 0;Gσ2g

� �

I

 where G = XX′/p is the genomic relationship matrix112,  
X is the centered and standardized genomic relationship matrix, σ2g

I
 is the genomic 

variance and p the number of markers and εi is the error term (assuming that the 
joint distribution of ε is N (0, Iσ2

e) where σ2
ε is the residual variance). We also used 

the Bayes B approach113 for comparison with the GBLUP prediction accuracies and 
estimation of marker effects. The BGLR package in R114 was used to fit the GBLUP 
and Bayes B models with 100,000 iterations and 10,000 burn-ins. BGLR treats the 
parameter π that is the proportion of non-null effects as unknown and assigns a 
beta prior parameterized such that the expected value is E(π) = π0, where π0 is the 
number of prior counts. Prediction accuracies were calculated as the Pearson’s 
correlation between the phenotypic values or BLUEs and the predicted genomic-
estimated breeding values.

The impact of missing marker data and genomic coverage on predictions 
was evaluated with marker subsets of 2,253, 9,285 and 16,072 markers. Genomic 
predictions within the panel were done using fivefold cross-validations, for which 
folds comprising 153–196 lines were predicted from four other folds comprising 
613–784 lines, and the mean of 100 iterations was taken. We also performed 
across-panel genomic predictions, for which panels comprising 766–980 lines 
were predicted from three other panels of 2,505–2,719 lines, except for seedling 
resistance traits.

Genome-wide association mapping. Genome-wide association mapping was 
implemented in TASSEL v.5, using a mixed linear model115 that accounts for both 
population structure and kinship. Population structure was accounted for with the 
first two principal components116, whereas kinship was accounted for using the 
pedigree–relationship matrix. We also used the R package LEA (Landscape and 
Ecological Association studies) to estimate the individual ancestry coefficients and 
the number of ancestral sub-populations117 The optimal level of compression and 
the ‘population parameters previously determined’ method118 was used to run the 
mixed linear model and a Bonferroni threshold level of 0.20 was used to correct 
for multiple testing and identify the significant markers in the panel of EYTs. The 
significant markers were then delineated into QTLs based on the LD between 
markers, where markers with P < 0.001 for the existence of LD were included 
in the same QTL. The genetic positions of the markers were obtained through 
publicly available mapped markers in the Triticeae Toolbox database (https://
triticeaetoolbox.org). The trait-associated markers and previously reported genes 
or QTLs near the significant markers were anchored onto a genotype–phenotype 
map aligned to the RefSeq v.1.0 and visualized using Phenogram (http://
visualization.ritchielab.org/phenograms/plot).

Biparental mapping. In the biparental mapping population, QTL mapping 
and genetic map construction were done using the Minimum Spanning Tree 
algorithm119 in the ASMap R package120. In addition, the recombinants were 
profiled for the proportion of resistant and susceptible parental genomes.

Genomic fingerprinting and allele frequency dynamics. The estimated allelic 
effects of 195 trait-associated markers (the most significant marker for each trait in 
each QTL) from GWAS were used to generate the genomic fingerprints of 44,624 
wheat lines. The favorable alleles were defined as those that had increasing effects 
on GY, agronomic traits and end-use quality related traits and decreasing effects 
on diseases. The progressive trend of the favorable alleles and the alleles with 
increasing effects were analyzed in the five yield trial panels from 2014 to 2018. In 
addition, the frequency dynamics of the favorable alleles for GY in the ESWYTs 
due to selection for 15 years (2013–2017) was assessed using 47 markers associated 
with GY in the EYTs and ESWYTs. Furthermore, to determine whether the change 
in allele frequencies is solely due to genetic drift, we calculated the expected 
variance due to random genetic drift using the equation:

Vt  pð1� pÞ 1� exp � t
2Ne

� �� �
ð3Þ

where p is the initial allele frequency, t is the number of generations and Ne is the 
effective population size121 and compared it with the observed variance of the 
favorable allele frequencies for GY.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The phenotyping data for the lines used in this study are available in 
Supplementary Data 1. The marker P values, additive effects and percentage 
variation explained by each marker are available in Supplementary Table 2. The 
genomic fingerprints of 44,624 wheat lines for 195 trait-associated markers are 
available in Supplementary Table 4a–d. The raw genotyping data for the lines are 
available in FigShare (https://doi.org/10.6084/m9.figshare.8940257.v1).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis The Huber’s robust fit outliers method was used for removing outliers in the phenotypic data using the ‘JMP’ statistical software 
(www.jmp.com). The BGLR package in 'R' was used to fit the Genomic-Best linear unbiased prediction model for genomic prediction. 
TASSEL version 5 was used for genome-wide asscoiation mapping. QTL mapping and genetic map construction were done using the 
Minimum Spanning Tree algorithm in the ASMap ‘R’ package. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The phenotyping data for the lines used in this study is available in Supplemental File S1. The marker p-values, additive effects and percent variation explained by 
each marker are available in Supplementary Table 2. The genomic-fingerprints of 44,624 wheat lines for 195 traits-associated markers is available in Supplementary 
Tables 4a-d. The raw genotyping data for all the 44,624 lines is available at https://doi.org/10.6084/m9.figshare.8940257.v1
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size of 44,624 lines represents CIMMYT's wheat breeding lines genotyped for the past 5 years and a subset of 3,485 lines that had 
extensive phenotyping information was used for genome-wide association mapping and genomic prediction.

Data exclusions No data was excluded from the analysis.

Replication Most of the phenotyping data used in this study was collected on a set of replicates and for disease evaluations, atleast 3-4 evaluations across 
time during the progression of the disease were performed. For grain yield measurements, all the entries were replicated thrice and 
evaluated in trials with two checks per trial. 

Randomization Randomization is applicable only to the assignment of individual lines to the different folds for cross-validations in genomic predictions and 
we used 100 iterations to re-allocate the lines to different folds every time and only the mean of 100 iterations is reported. The only covariate 
to be considered was the days to heading that was moderately associated with grain yield and it was controlled by removing the lines in the 
tails of the days to heading distribution and only including lines that headed in a week's interval.

Blinding Blinding was not relevant to this study and we have used all the available phenotypic and genotypic data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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