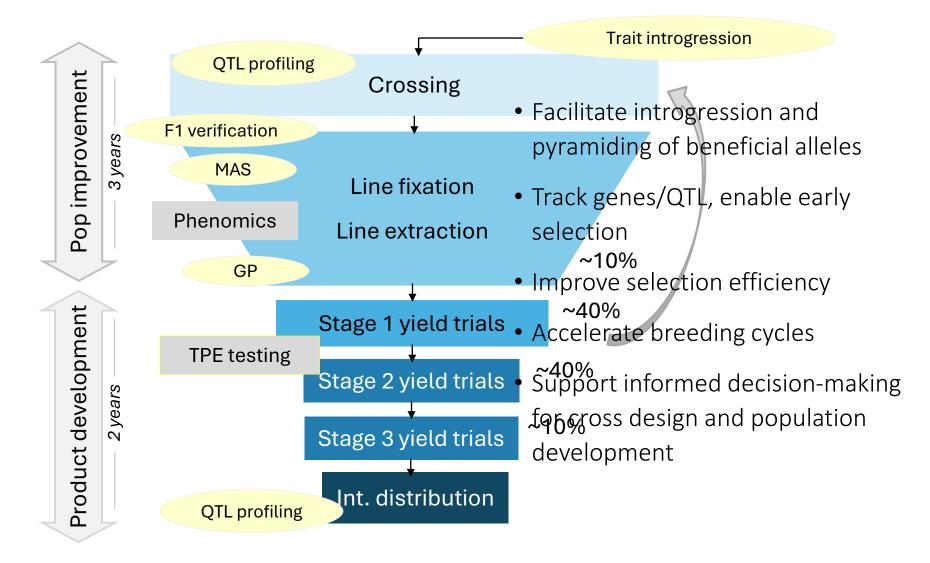
Harnessing sequencedbased haplotypes within IWYP

Susanne Dreisigacker, Matthew Reynolds, Shifeng Cheng, Cong Feng, Jiemeng Xu, Carolina Rivera, Simon Griffith, Jose Crossa


IWYP annual meeting • September-12, 2025

Molecular marker deployment in the GWP

Deployment of IWYP derived molecular markers

Trait introgression

Gene	Trait	Source	Status	
TaGW2-6A	Grain weight	IWYP76	DW elite	
GL2	Grain length	IWYP76	AL, BC2F3	
TaCol-5B	Spike architecture	-	AL	
Qht-1B,2B,6D	Heat tolerance	IWYP64	AL, BC2F3	
Qmst-3B,5B,7D	Heat/Drought tolerance	SEED	AL, BC2F3	
TaGW2-6A,B,D	Grain weight	IWYP76	BC2F3	
HB-D2	Spike architecture	IWYP-AP09	BC2F4	
7T.D2 (Ae. muticum)	Grain number, biomass	IWYP48	F1Top, BC2F4	

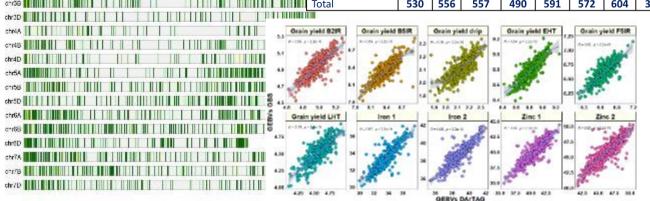
Speed Breeding Advancement 3 to 4 generations/year

CIMMYT Toluca, Mexico

Deployment of IWYP derived molecular markers

QTL profiling

	Г
G	r


Gene	Trait	Source
TaToe1-B1	Flowering, HI	IWYP25
TaFT3-B1	Flowering, HI	IWYP25
Qtkw.cim-6A	Grain weight	IWYP76
Qtkw.jic-6A	Grain weight	IWYP76
Wapo-A1	Spikelets/Spike	IWYP708
FT-A2	Spikelets/Spike	IWYP708
GNI1	Grain number	-
GNI2	Grain number	-
		•

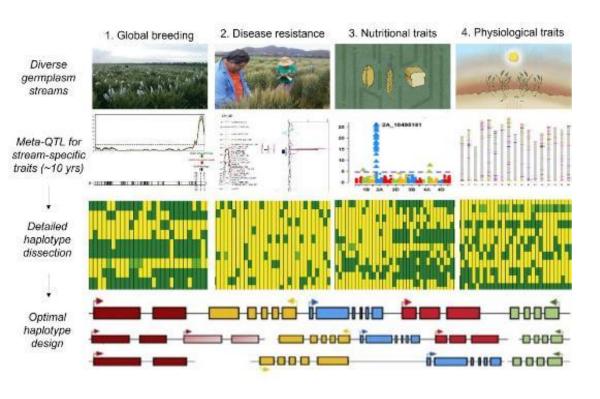
TaDArTAG panel 2.0

https://excellenceinbreeding.org/toolbox/services/wheat-39k-mid-density-genotyping-services-0

The number of SNPs within 1Mb window size Chromosome → Genome↓ 234 233

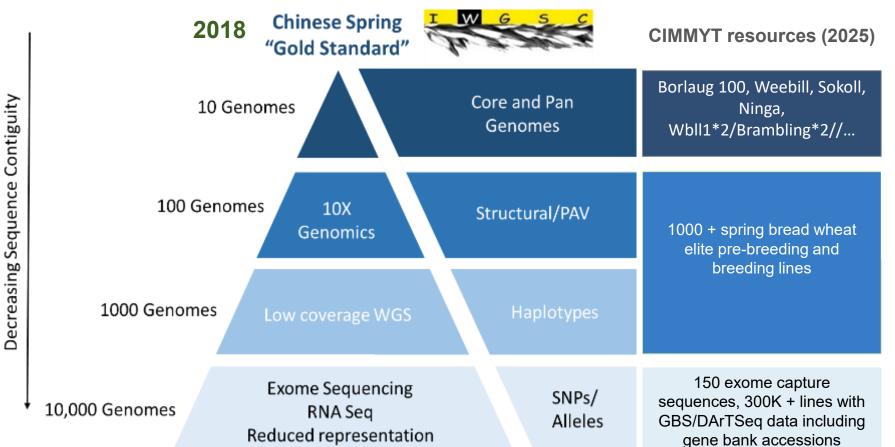
New MTA form recent gene discovery panels

Panels
MOLPAN
NAMPAN
EDPIE
SYNPANII
ISo-D lines


Panel	Environments	Marker		Chromos ome	Position	P value	PVE per SNP	PVE all sig SNPs	Novel?	PVE all novel SNPs	MTA's already in lit/database
SYNPAN II	Irrigation	AX-94907052		1A	320224045	0.00109	12.59%	39.80%	Υ	22.60%	
		Excalibur_c39215	_100	2D	55140995	0.00109	26.91%				TGW, spike length, DTH, DTM
		AX-158537163		4B	35514387	0.00648	9.15%				GY, DTH, DTM, PH (Rht-B1)
		AX-158621657		5B	480281212	0.00653	3.04%		Υ		
		AX-94951542		5B	42393918	0.00756	26.25%		Υ		
		AX-94516388		6B	51222339	0.00109	27.37%				TGW, GN, DTH
	Heat	Excalibur_c32608	_500	1B	327842942	0.00000	37.81%	46.90%	Υ	19.90%	
		wsnp_Ex_rep_c67	838_66536117	2B	742466512	0.00215	15.30%				Stem rust
		Ex_c525_1401		2B	6338781	0.00022	16.40%		Υ		
		wsnp_Ex_c2920_5	385184	3B	500307823	0.00373	10.30%				Stem rust
		BS00094343_51		5A	494870904	0.00001	42.32%				TGW, PRI
		wsnp_Ex_c54772_	57528275	6B	710103661	0.00008	16.30%				Stem rust
EDPIE-MEX	Irrigation	AX-158530940	6D	46469428	8 0.0157	3.76%	4	3.76%		NA	TGW
EDFIE-MEX	iiiigatioii	AA-136330940	OD	40409420	0.0137	3.70%	U	3.70%		INA	TGVV
	Heat	AX-89413000	1A	51373658	0.0070	5.58%	<u></u>	43.20%	V	4%	Novel
	Ticat	BobWhite_c31163_694	2A	74668237				45.2070	·	470	HI
		Kukri_rep_c107572_121	2B	68365339							Spike length, GY
		Kukri_c48194_641	4A	71074447							PH
		wsnp_Ex_c37437_45184851	4A 4B	57939598							PH, DTH
		CAP7 c7065 166	4B 6B	64389922							Flag leaf area
		Excalibur_c22419_460	7D	59091512	0.0005	5.31%	0				DTH, DTM
	Doought	AX-158620546	5A	44097562	9 0.0004	12.55	06	22.30%	V	22.30%	Novel
	Deought							22.30%	Y	22.30%	
		AX-158566772	7A	54137503	0.0065	9.72%	0		1		Novel
	Combined, all	Vulri c12602 961	6B	64553348	4 0.0040	8.54%	4	22.52%		NA	PH, DTH
	Combined, all	Kukri_c12602_861						22.32%		NA	
		AX-108852497	7A	13800562	0.0105	13.99	170				TGW, NDVI

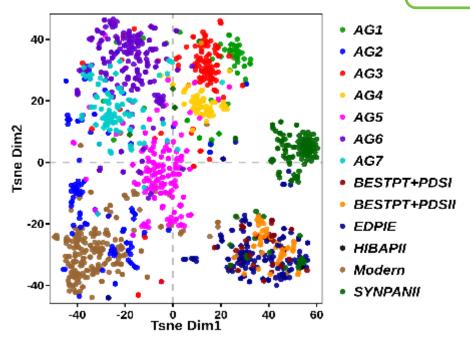
GlobalWheatG2B: Harnessing sequence-based haplotypes

Collaboration with AGIS-CAAS and JIC


- WP1. Foundational and structural analyses
 - Population dynamics
 - Linkage and haplotype structures
 - Introgressions
- WP2. Gene discovery (focus on physiological traits)
- WP3. In silico gene and haplotype mining
- WP4. Genomic selection using whole genome sequence data

Adoption of Sequence-based Genomic Tools

Current CIMMYT sequence resources



Foundational and structural sequence analyses

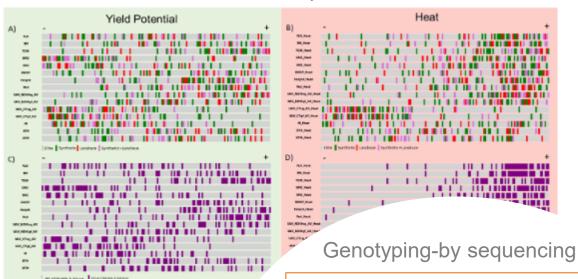
Mayor steps

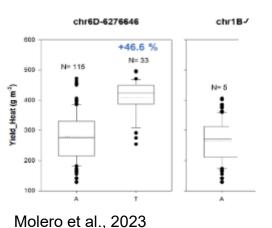
- Sequencing of approx. 900 CIMMYT Wheat lines (several hundred Gb)
- SNP Calling and filtering
- Mapping WatkinsG2B SNPs to CS2.1
- Merging CIMMYT and WatkinsG2B data
- Comparative population structure analyses
- Building haplotype maps
- Evaluation of diverse structural elements

Cong Feng, AGIS-CAAS

First observations of the initial pop structure:

- CIMMYT wheat and a few modern varieties in WatkinsG2B have similar genetic backgrounds, but the majority is different
- 2. Synthetic hexaploidy wheat for a different group





Gene discovery in HIBAP, EDPIE and SYNPAN

HIBAP1

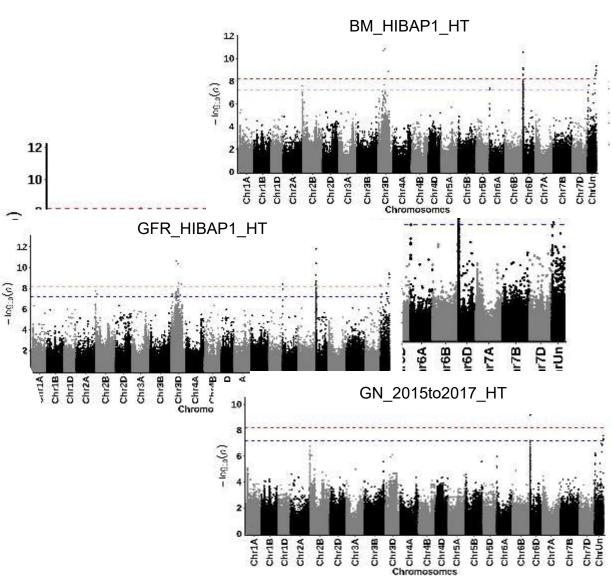
Exome Capture

HB6D-Heat stress
(+240-370 kg/ha in GY under heat stress)

2500

2000

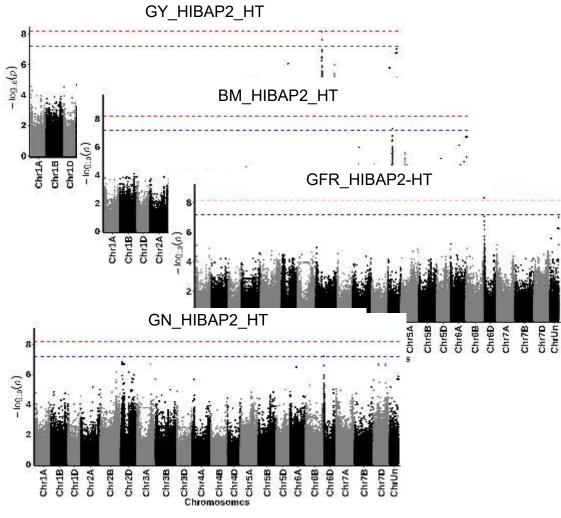
1500


500

GT AC GC

Heat-LTP1-YLD-15-16

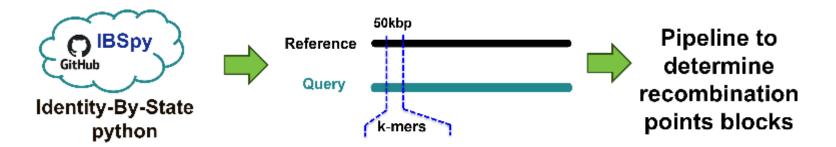
Heat-LTP1-YLD-16-17



Gene discovery in HIBAP, EDPIE and SYNPAN

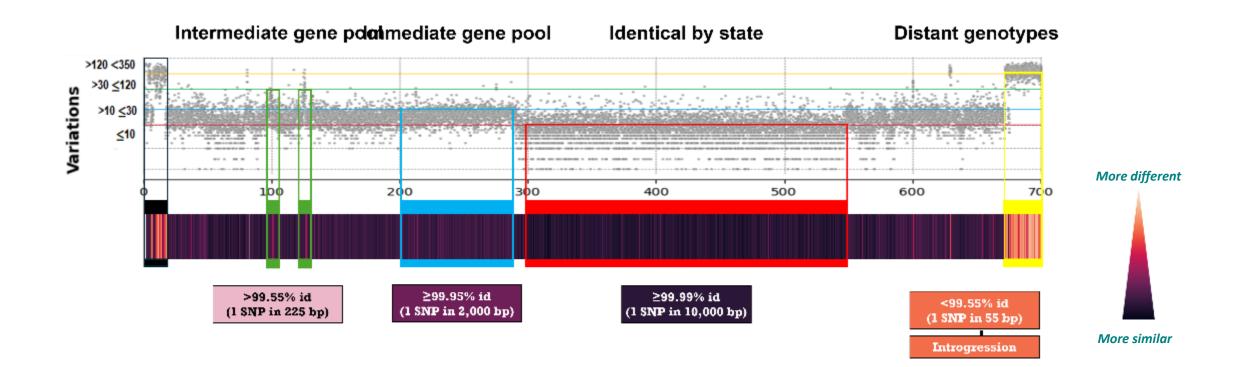
HIBAP2

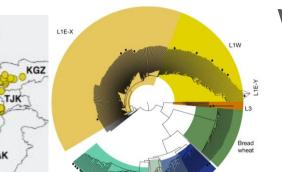
HIBAP3


Next steps

- Run sequenced-based GWAS for all relevant HIBAP traits
- Explore haplotype diversity around major MTA
- Mine different haplotypes across CIMMYT elite lines and the Watkins collection
- Develop more presice, candidate gene-based molecular markers for breeding

Determination of recombination blocks via *kmer* comparisons



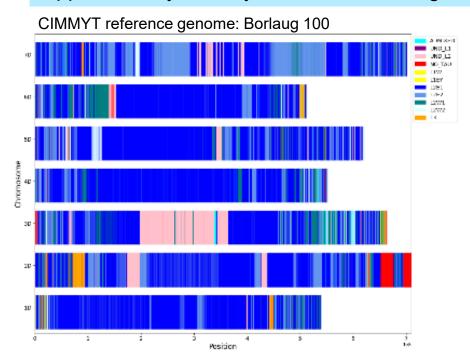


Ricardo Ramírez González

Jesús Quiroz Chávez

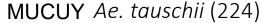
Determining the D-genome donors in the CIMMYT elite bread

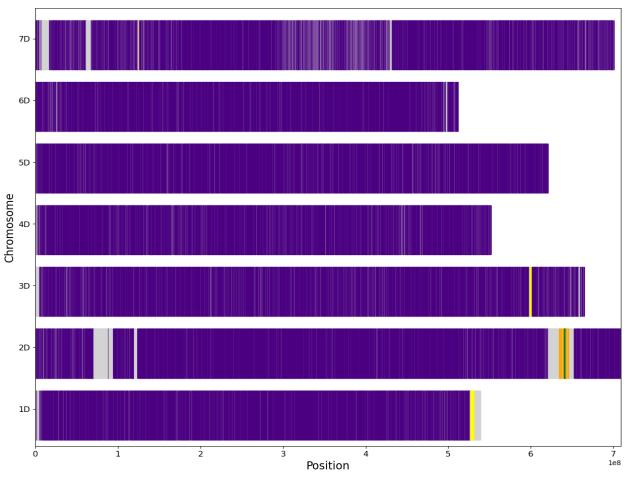
wheat line Borlaug 100


- Ae. tauschii can be characterized into three linages
- Linage 2 as the closest donor of the wheat D- genome

Fernando Galvan Delgadillo

The D-genome of Borlaug 100 is defined by approximately 95% by *Ae. tauschii* Lineage 2


Gaurav et al., 2022



Lineages	Subpopulation	Contribution		
	L2E1	55.5%		
	L2E2	17.6%		
Lineage 2	L2W1	5.9%		
Lineage 2	L2W2	1.8%		
	UND_L2	14.2%		
		95.04%		
Lineage 1	L1W + L1EY + UND_L1	0.69 < 1%		
Lineage 3	-	2.4%		
ADMIXED	-	0.6%		
NO_TAU	_	1.2%		

Leveraging genetic innovations for accelerated breeding of climate resilient and nutritious crops https://www.cabi.org/uk-cgiar-centre/crop-genetic-improvement-for-future-climate-resilience/

Estimating the contribution of *Ae. tauschii* in synthetic-derived lines using *k-mer* comparisons

- Kmer comparison with sequence assemblies from the mayor tauschii lineages can help to determine recombination or possible contribution of Ae. tauschii accessions in Synthetic derived lines
- Some of the most used SHW in the CIMMYT Global Wheat Program include *Ae. tauschii* (205), *Ae. tauschii* (224) which belong to Lineage 1
- Contributions of Ae. tauschii accessions differ in synthetic derived lines and vary across the genome

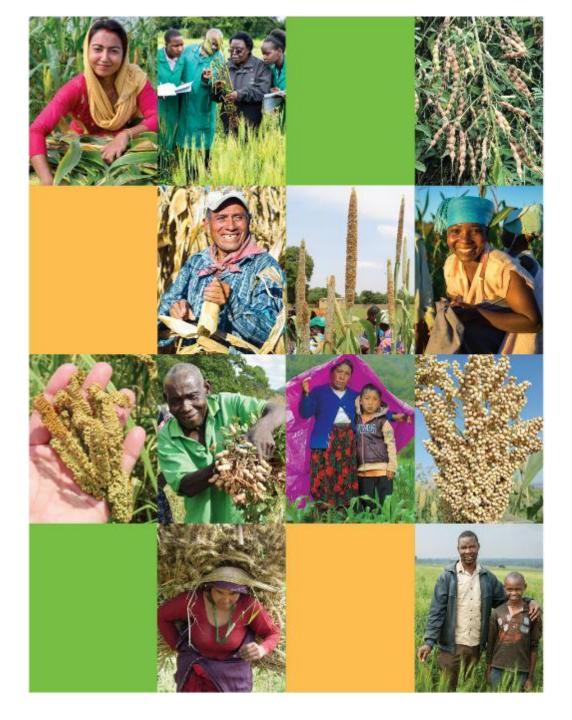
Genomic selection using whole genome sequences

- Cross validation in EDPIE: 150 lines with phenotypic data (DTH, DTM, PH, GY) across 22 international environments
- 2. Whole genome sequence data

Filtering criteria:

- **Filtering by Read Depth (DP):** the number of sequencing reads. Two ranges:10-50, 51-100
- Filtering by Genotype Quality (GQ): the confidence that the assigned genotype (e.g., 0/0, 0/1, 1/1) is correct. GQ >= 30 and GQ >= 60.
- **Filtering by Allelic Depth (AD):** the number of reads supporting each allele: AD>=5 and AD>=20.
- Filtering by Genotype Likelihood (PL): PL gives the relative probability of each genotype PL>=30 and PL>=70

3. Prediction questions:


- Increase of prediction accuracy in a multi-environmental context
- Effect of different filtering treatments
- Can prediction models inform on variants to be included in routinely used SNP panels

Treatments	min_DP	max_DP	GQ	AD	PL
T1	10	50	60	5	30
T2	10	50	60	5	70
T3	10	50	60	20	30
T4	10	50	60	20	70
T5	10	50	30	5	30
T6	10	50	30	5	70
T7	10	50	30	20	30
T8	10	50	30	20	70
T9	51	100	60	5	30
T10	51	100	60	5	70
T11	51	100	60	20	30
T12	51	100	60	20	70
T13	51	100	30	5	30
T14	51	100	30	5	70
T15	51	100	30	20	30
T16	51	100	30	20	70

Thank you for your interest!

