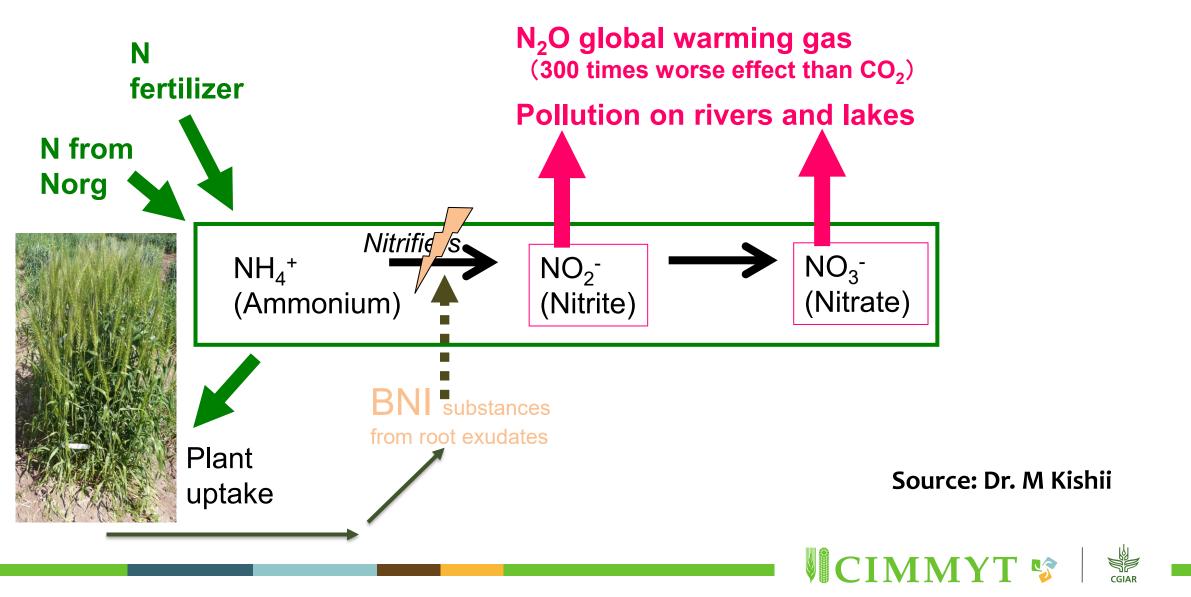
Nitrification Control via Crops

Hannes Karwat Global Wheat Program (GWP) International Maize and Wheat Improvement Center (CIMMYT), Mexico

IWYP CONFERENCE: TRANSLATING DISCOVERY INTO IMPACT Session 4: ROOT MICROBE INTERACTIONS AND HYBRIDS September 10 and September 12, 2025

N pollution from agriculture to the environment

- Satellite image of the Gulf of California, one month after start of crop season
- <u>Link</u>
- Further information:

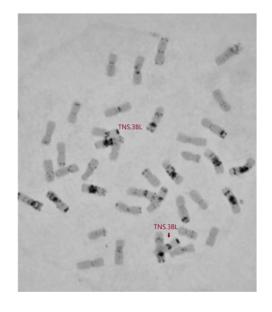

Michael Beman, J., Kevin R. Arrigo, and Pamela A. Matson. "Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean." Nature 434, no. 7030 (2005): 211-214.

N cycle & Biological Nitrification Inhibition (BNI)

A short history of BNI research

1	BNI?				
1983	CIAT observed Brachiaria pasture soil showing low nitrate level				
1995	JIRCAS initiated collaborative research with CIAT in Brachiaria pasture				
2003	Dr. Subbarao reported soil nitrification inhibition in Brachiaria pasture (Plant and Soil)				
2005	1st phase, BNI research project at JIRCAS (2005-10)				
2006	Introduction of the BNI concept for further crop development (Critical Reviews in Plant Sci.)				
2009	Confirmation of BNI in Brachiaria pasture (PNAS)				
2010	2 nd phase, BNI research project (2010-15), initiating sorghum BNI with ICRISAT				
2012	Confirmation of BNI in sorghum (Plant and Soil)				
2015	3rd phase, BNI research project (2015-20), initiating wheat BNI with CIMMYT				
2018	Initiating maize BNI, and obtaining several BNI compounds (Biology and Fertility of Soil)				
2020	Confirmation of BNI effect in BNI-enabled wheat at field level (PNAS)				
2021	PNAS papers published Proof of concept!				
2022	JIRCAS introduced NNF to CIMMYT				
2024	CropSustaiN "BNI Mission"				


BNI capacity confirmed with bioassay (Subbarao et al. 2021)


Table 3. BNI capacity of elite wheat genetic stocks and BNI elite wheats (SI Appendix, Study 5a)

BNI activity released from
intact plant roots (ATU · g ⁻
root dry wt. \cdot d ⁻¹)

Serial no.	Wheat genetic stock	Mean	SE	
1	ROELFS	86.5ª	12.8	
2	BNI-ROELFS (CSMONO3B/3/CS/LE.RA/CS/4/CSph/5/5*ROELFS(N)	162.2 ^b	16.8	
	SE of Least Square Mean ($P < 0.001$) (based on two-way analysis	6.99 (P < 0.005)		
	General Linear Model using SYSTAT 14.0)			
3	MUNAL	92.7 ^a	12.1	
4	BNI-MUNAL (CSMONO3B/3/CS/LE.RA/CS/4/CS/ph/5/5*MUNAL(N)	181.7 ^b	22.3	
	SE of Least Square Mean ($P < 0.001$) (based on two-way analysis	17.9 (P < 0.05)		
	General Linear Model using SYSTAT 14.0)			
5	NAVOJOA	91.2 ^a	22.4	
6	BNI-NAVOJOA(CSMONO3B/3/CS/LE.RA/CS/4/CS/ph/4/4*NAVAJOA(N)	119.2 ^a	14.2	
	SE of Least Square Mean ($P < 0.001$) (based on two-way analysis	22.42 ^{ns}		
	General Linear Model using SYSTAT 14.0)			
7	QUAIU	70.2 ^a	4.9	
8	BNI-QUAIU CSMONO3B/3/CS/LE.RA/CS/4/CSph/5/5*Quaiu(N)	126.4 ^b	11.8	
	SE of Least Square Mean ($P < 0.001$) (based on two-way analysis	11.19 (<i>P</i> < 0.05)		
	General Linear Model using SYSTAT 14.0)			

Holm–Sidak method—letters represent values that are significantly different (P < 0.05). Values are means \pm SE of four replications.

BNI expression confirmed for alkaline soil & high N

Agriculture and Agri-Food Canada

- First observation of BNI-expression in an alkaline soil (pH 8.6-8.7) under high N fertilization (250 kg N ha⁻¹)
- BNI expression in terms of lower soil nitrate in the field
- Reduced potential nitrification rates from incubation studies in soil collected one week after N
 application
- Indications that Lr#N SA has a secondary effect of significant higher nitrate uptake from the soil
- Yield quantity and quality stability in two of three experiments. However, harvest index of +BNI line were always lower than the HI from ROELFS
- Delayed anthesis and flowering due to the translocation were observed
- Quality analysis suggests that ROELFS-BNI BC5 needs more backcrossing

Manuscript submitted to Field Crops Research

Decision on acceptance expected within Sep 2025

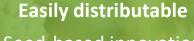
novo nordisk foundation

CropSustaiN

New innovative crops to reduce the nitrogen footprint from agriculture

Seeding the green transition via a natural phenomenon called BNI that works through plant root-soil interaction

Mission


- Verify global potential of BNI technology to reduce the nitrogen footprint from wheat-based agriculture
- 2) Enable plant breeders to provide BNI-wheat seeds to farmers globally
- 3) Generate the 'pull' for adopting BNI technology in existing value systems from farmers, policymakers, and influencers

BMI trait is wheat

15-20%

Uses conventional breeding

Potential reduction in nitrogen fertiliser usage
Depending on geography and soil nitrogen
environment

Seed-based innovation

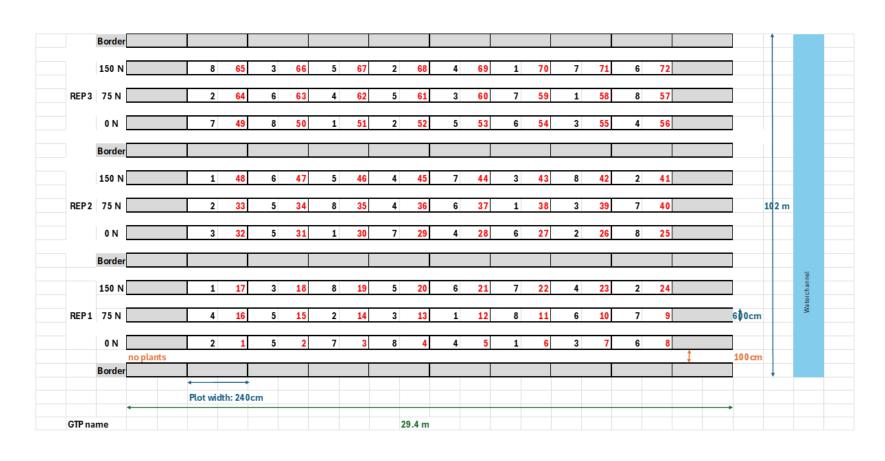
Partnerships

CropSustaiN: Hypothesis on the table

- BNI functionality enhances N uptake & utilization of limited N by plants in **low nitrogen** environments.
- BNI mitigates N loss in **high nitrogen** environments by reducing leaching and N2O emissions, leading to nitrogen savings.
- Environmental and field management conditions can support consistent and predictable BNI effects.
- BNI performance depends on GxExM interactions (incl. soil pH, soil structure, temperature). Such variance represents a major opportunity for breeding- and agronomy-based solutions.
- If N is used more efficiently, plants will mineralize less N, potentially leading to increased accumulation of soil C.

CropSustaiN Research Tracks

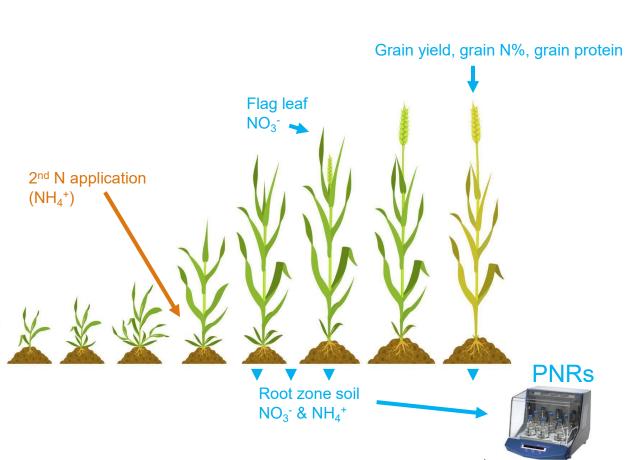
- **Track 1.** Establish and refine a <u>common framework</u> that harmonizes methodologies
- **Track 2.** Evaluate BNI trait agronomic effectiveness and stability and transfer translocations to new elite lines
- Track 3. Perform field-based assessment of BNI environmental impacts
- **Track 4.** Explore the feasibility of incorporating BNI activity into <u>winter wheat</u>
- Track 5. Develop molecular markers associated with Leymus BNI activity
- Track 6. Investigate biochemical mechanisms of BNI activity with microbial ecology
- Track 7. Investigate innovation ecosystems and scaling for impact co-creation


Multi-location field trials

- Track 2: Stability yield quality and quantity of BNI-Wheat (8 pairs/12pairs*)
- N applied as ammonium sulphate in 2 split applications: 0, 75, 150 and 225* kg N ha-1
 - Mexico* (El Batan, Toluca, Obregon)
 - South Asia (India, Pakistan, Nepal)
 - East Africa (Kenya, Ethiopia)
 - South America (**Uruguay**)
 - **—** ...
 - = 14 trials/year
- Track 3: N loss quantification in BNI-Wheat systems (2 pairs)
 - Mexico
 - India
 - Ethiopia
 - = 4-5 trials/year

Field Layout Yield Trial+: Genotype x N rate

- 1. VOROBEY
- 2. VOROBEY + Lr#n-SA
- 3. BORLAUG
- 4. BORLAUG + Lr#n-SA
- 5. ROELFS
- 6. ROELFS + Lr#n-SA
- 7. NAVOJOA
- 8. NAVOJOA + Lr#n-SA

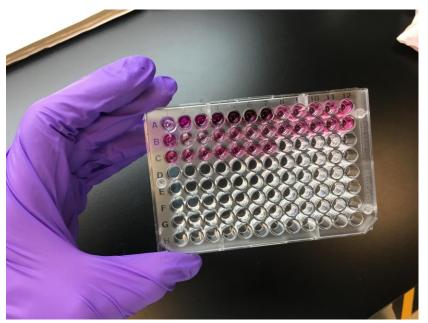


Methodology Yield Trial+

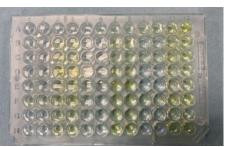
- Yield stability regardless of the introduction of the LR#N short arm to chromosome 3B
- Measurement of soil nitrate and ammonium after the second N fertilization (KCL): NO₃-, NH₄+, N_{min}, NO₃-:NH₄+, leaf NO₃- (Nitrachek)
- Yield quality (protein and N% in grains), yield x N% = N uptake
- Soil incubation to determine potential nitrification rates (PNRs)

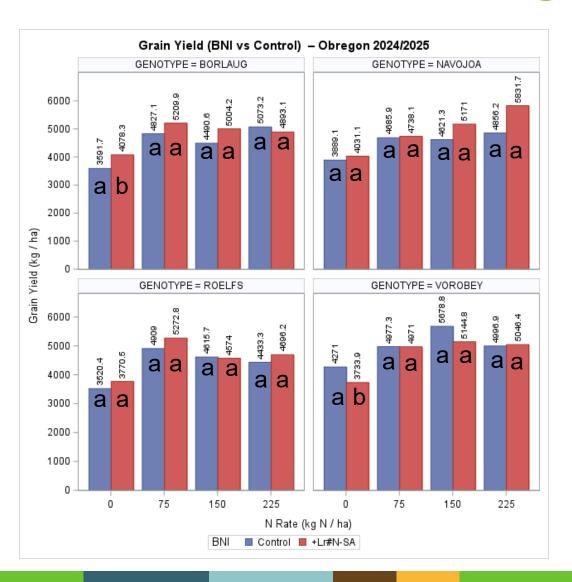
1st N application (NH₄⁺)

Trial establishment CropSustaiN YEAR 1






Mineral N determination during BNI/nitrification peak

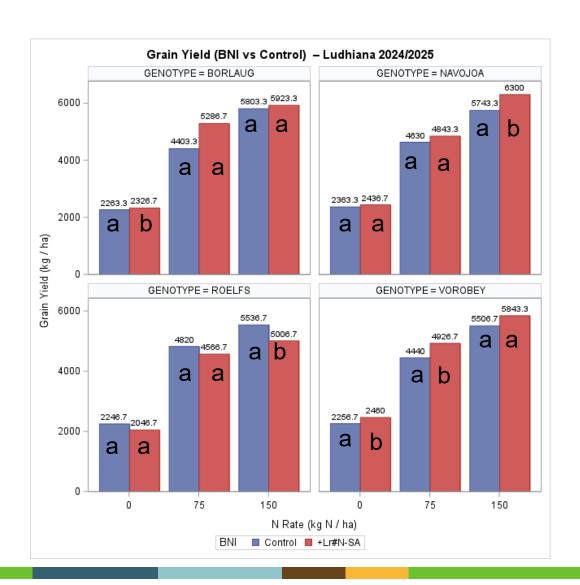


Yield Trial + Obregon (MEXICO) 2024/25

BLUE = recurrent parent (control)

RED = BNI line

Same letters indicate no sig. difference between BNI and Control

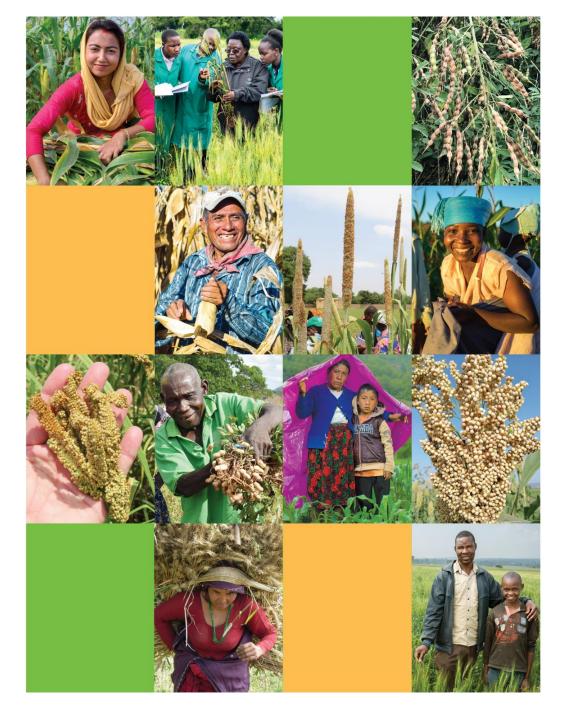

Source		Type III SS	Mean Square	F Value	Pr > F
BNI		698484.17	698484.17	2.66	0.1077
N_rate		21274837.51	7091612.50	27.03	<.0001
GENOTYPE		1813987.09	604662.36	2.30	0.0852
BNI*N_rate		130208.60	43402.87	0.17	0.9193
BNI*GENOTYPE		1610417.52	536805.84	2.05	0.1163
N_rate*GENOTYPE		3244661.19	360517.91	1.37	0.2186
BNI*N_rate*GENOTYPE		1757799.32	195311.04	0.74	0.6670

- N rate strongest effect on yields
- Genotypical yield differences (p=0.0852)

Yield Trial + Ludhiana (INDIA) 2024/25

BLUE = recurrent parent (control)

RED = BNI line


Same letters indicate no sig. difference between BNI and Control

- **N rate** had the strongest effect on yield (p < 0.0001), followed by significant effects of **genotype** (p = 0.0003) and **BNI treatment** (p = 0.0052).
- The BNI × Genotype interaction was highly significant (p < 0.0001), showing that genotypes responded differently to the introduction of the Lr#N segment.
- Interactions between N_rate × Genotype (p = 0.0213) and BNI × N rate× Genotype (p = 0.0753) suggest genotype-specific responses to the combined effect of nitrogen levels and BNI.

Data provided by Dr. Pradeep Kumar Bhati

Thank you for your interest!

h.karwat@cgiar.org

