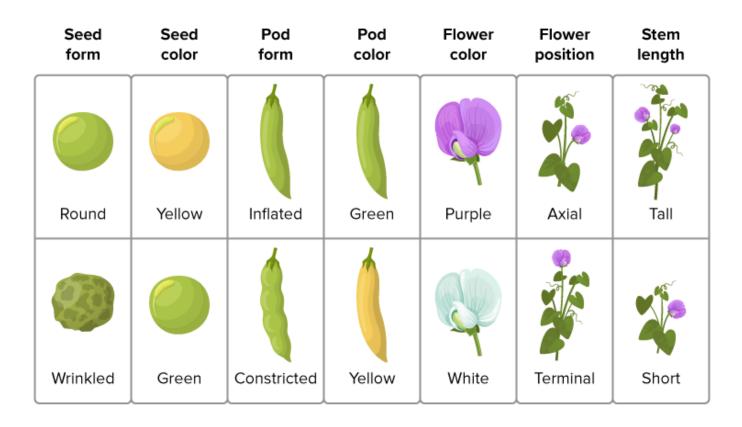
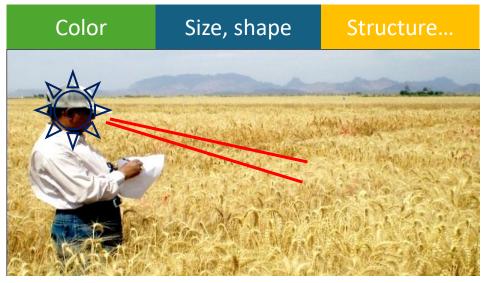
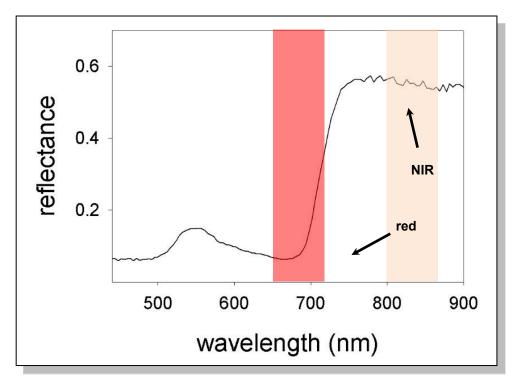


Phenocart - Ground based field phenotyping


Jiemeng Xu, Matthew Reynolds


IWYP conference 10th September, 2025

How do you describe the characteristics of your plants in the field?



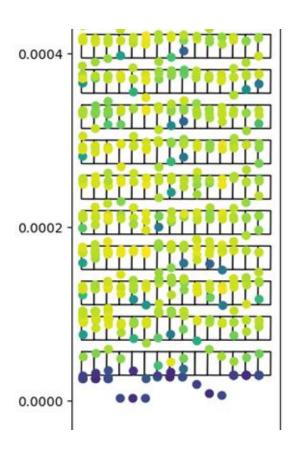
Sensors and instruments: breaking our physiological limitations

$$NDVI = \frac{R_{NIR} - R_{RED}}{R_{NIR} + R_{RED}}$$

Infrared thermometer

- Canopy temperature
- Strong correlation with root capacity & yield

Phenocart - multi sensor field phenotyping system

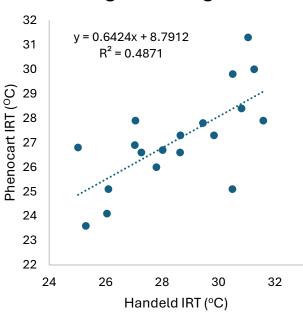


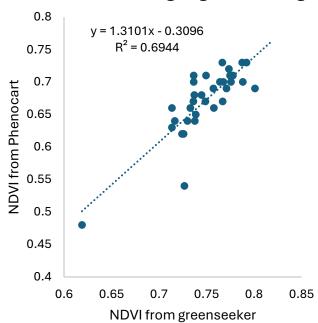


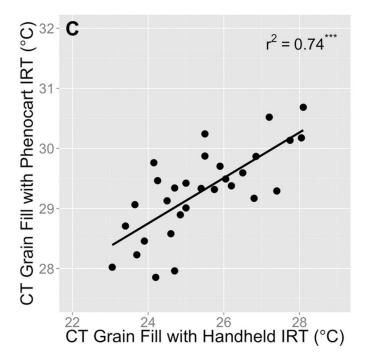
Phenocart - Data process and extraction

```
20240125_TEST V23-24_S0112_001: Bloc de notas-
 Archivis Edición Formato Ves Ayuda
timestamp,datetime iso,quality fix,latitude,longitude,altitude,sensor id
1706208331.703441,2024-01-25 18:45:49.199,1,27.395232391, 109.927831950,
1706208333.799261,2024-01-25 18:45:51.199,1,27.395232381,-109.927831976,
1786288334.852313,2824-81-25 18:45:52.199,1,27.395232379,-189.927831972,
1786288335.988382,2024-01-25 18:45:53.399,1,27.395232402,-109.927831950,
1706208338.088906, 2024 01-25 18:45:55.599, 1, 27.395232409, -109.927831949,
1706208339.172697,2024-01-25 18:45:56.599,1,27.395232392,-109.927831908,
1706208340.260288,2024-01-25 18:45:57.799,1,27.395232406,-109.927831931,
1706208341.314527,2024-01-25 18:45:58.799,1,27,395232414,-109.927831963,
1706208342,370801,2024-01-25 18:45:59.799,1,27.395232413, 109.927831968,
1706208343.424826,2024-01-25 18:46:00.799,1,27.395232426,-109.927831965,
1706208344.515260,2024-01-25 18:46:01.999,1,27.395232398,-109.927831969,
786288345.686811,2824-81-25 18:46:82.999,1,27.395232482,-109.927831951,
786288346.692729,2824-81-25 18:46:84,199,1,27,395232388,-189.927831948,
706208347.747836,2024-01-25 18:46:05.199,1,27.395232399, 109.927831943,
706208348.801195,2024-01-25 18:46:06.199,1,27.395232393,-109.927831954,
706208349.861709,2024-01-25 18:46:07.399,1,27.395232370, 109.927831985,
786208350.952785,2024-01-25 18:46:08.399,1,27.395232376,-109.927831987,
786288352.038963,2024-01-25 18:46:09.399,1,27.395232390,-109.927831970,
```

```
# Asumiendo que las columnas se llaman 'longitude' y 'latitude' (ajusta según :
trial_temperatures_shp = gpd.GeoDataFrame(trial_temperatures, geometry=gpd.point
trial_ndvi_shp = gpd.GeoDataFrame(trial_ndvi, geometry=gpd.points_from_xy(trial_
trial_pri_shp = gpd.GeoDataFrame(trial_pri, geometry=gpd.points_from_xy(trial_p
trial_spec_shp = gpd.GeoDataFrame(trial_spec, geometry=gpd.points_from_xy(trial_
#trial_spec_shp = gpd.GeoDataFrame(trial_spec, geometry-gpd.points_from_xy(trial
 #Crear el gráfico
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
 for x in ax:
    trial_shp.plot(ax=x, color='white', edgecolor='black')
 trial_temperatures_shp.plot(ax=ax[0], column='target_temp_C')
 trial_ndvi_shp.plot(ax=ax[1], column='index_value')
 trial_pri_shp.plot(ax=ax[2], column='index_value')
 trial_spec_shp.plot(ax=ax[2], column='ndvi')
 # Agregar títulos a cada subgráfico
 ax[0].set_title("Canopy temperature", fontsize=12)
  ax[1].set_title("NDVI index", fontsize=12)
  ax[2].set_title("spec NDVI", fontsize=12)
  # Ajustar el diseño para evitar superposición
  plt.tight_layout()
```




Phenocart - Data validation

Canopy temperature at vegetative stage

NDVI during vegetative stage

The way to breeder-ready field phenotyping platform

A few key points for discussion

- Possible adoption by NARS
- Standardization and automation
- More sets of sensors

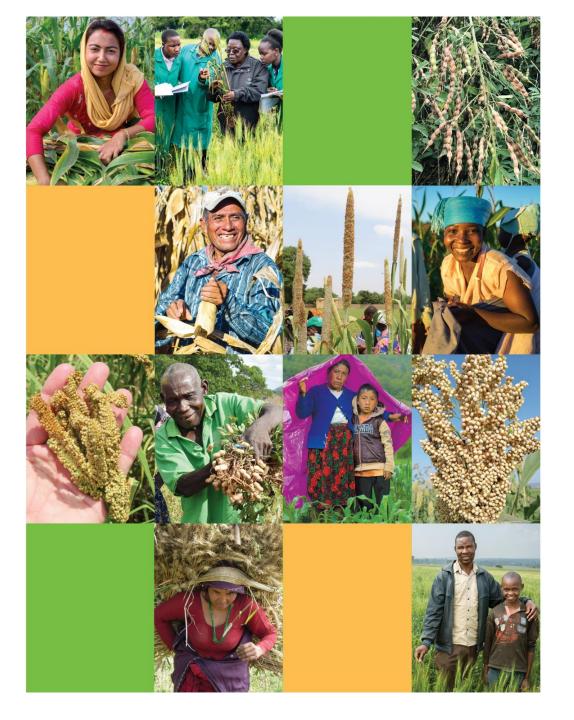
An option of portable, affordable and reliable ground-based HTP platform

All CIMMYT Donors

Wheat Yield

Research to Deliver Wheat for the Future

HeDWIC



Thank you for your interest!

